Table of Contents Author Guidelines Submit a Manuscript
Journal of Applied Mathematics
Volume 2013, Article ID 431794, 9 pages
http://dx.doi.org/10.1155/2013/431794
Research Article

A Secure Implementation of a Symmetric Encryption Algorithm in White-Box Attack Contexts

School of Software Engineering, Tongji University, Shanghai 200184, China

Received 21 July 2013; Accepted 17 September 2013

Academic Editor: Sabri Arik

Copyright © 2013 Yang Shi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. Wyseur, White-box cryptography [Ph.D. thesis], Katholieke University, Leuven, Belgium, 2009.
  2. S. Chow, P. Eisen, H. Johnson, and P. C. Van Oorschot, “A white-box DES implementation for DRM applications,” in Proceedings of the 2nd ACM Workshop on Digital Rights Management, vol. 2696 of Lecture Notes in Computer Science, pp. 1–15, Washington, DC, USA, November 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Chow, P. Eisen, H. Johnson, and P. C. Van Oorschot, “White-box cryptography and an AES implementation,” in Proceedings of the 9th Workshop on Selected Areas in Cryptography, vol. 2595 of Lecture Notes in Computer Science, pp. 250–270, St. John’s, Canada, 2003. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  4. M. Jacob, D. Boneh, and E. Felten, “Attacking an obfuscated cipher by injecting faults,” in Proceedings of the ACM Digital Rights Management Workshop, vol. 2696 of Lecture Notes in Computer Science, pp. 16–31, Washington, DC, USA, November 2002. View at Publisher · View at Google Scholar
  5. H. E. Link and W. D. Neumann, “Clarifying obfuscation: improving the security of white-box des,” in Proceedings of the International Conference on Information Technology: Coding and Computing (ITCC '05), pp. 679–684, Albuquerque, NM, USA, April 2005. View at Scopus
  6. B. Wyseur, W. Michiels, P. Gorisseii, and B. Preneel, “Cryptanalysis of white-box des implementations with arbitrary external encodings,” in Proceedings of the 14th Annual Workshop on Selected Areas in Cryptography, vol. 4876 of Lecture Notes in Computer Science, pp. 264–277, Ottawa, Canada, August 2007. View at Scopus
  7. L. Goubin, J.-M. Masereel, and M. Quisquater, “Cryptanalysis of white box DES implementations,” in Proceedings of the 14th Annual Workshop on Selected Areas in Cryptography, vol. 4876 of Lecture Notes in Computer Science, pp. 278–295, Ottawa, Canada, August 2007. View at Publisher · View at Google Scholar
  8. O. Billet, H. Gilbert, and C. Ech-Chatbi, “Cryptanalysis of a white box AES implementation,” in Proceedings of the 11th International Workshop on Selected Areas in Cryptography, vol. 3357 of Lecture Notes in Computer Science, pp. 227–240, Waterloo, Canada, August 2005. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  9. W. Michiels, P. Gorissen, and H. D. L. Hollmann, “Cryptanalysis of a generic class of white-box implementations,” in Proceedings of the 15th International Workshop on Selected Areas in Cryptography, vol. 5381 of Lecture Notes in Computer Science, pp. 414–428, Sackville, Canada, August 2008. View at Publisher · View at Google Scholar
  10. M. Karroumi, “Protecting white-box AES with dual ciphers,” in Proceedings of the 13th International Conference on Information Security and Cryptology (ICISC '11), K. H. Rhee and D. Nyang, Eds., vol. 6829 of Lecture Notes in Computer Science, pp. 278–291, Seoul, Korea, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. L. Tolhuizen, “Improved cryptanalysis of an AES implementation,” in Proceedings of the 33rd WIC Symposium on Information Theory in the Benelux, pp. 68–71, Boekelo, The Netherlands, 2012.
  12. Y. Xiao and X. Lai, “A secure implementation of white-box AES,” in Proceedings of the 2nd International Conference on Computer Science and Its Applications (CSA '09), pp. 410–415, eXpress Conference Publishing, Jeju, Korea, December 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. Y. De Mulder, P. Roelse, and B. Preneel, “Cryptanalysis of the Xiao-Lai white-box AES implementation,” in Proceedings of the 19th Annual International Workshop on Selected Areas in Cryptography (SAC '13), vol. 7707 of Lecture Notes in Computer Science, pp. 34–49, Springer, 2013. View at Publisher · View at Google Scholar
  14. A. Biryukov, C. De Cannière, A. Braeken, and B. Preneel, “A toolbox for cryptanalysis: linear and affine equivalence algorithms,” in Advances in Cryptology—EUROCRYPT, E. Biham, Ed., vol. 2656 of Lecture Notes in Computer Science, pp. 33–50, Springer, Berlin, Germany, 2003. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  15. V. Rijmen, J. Daemen, B. Preneel, A. Bosselaers, and E. De Win, “The cipher SHARK,” in Proceedings of the 3rd International Workshop on Fast Software Encryption, pp. 99–111, Cambridge, UK, February 1996.
  16. T. Jakobsen and L. Knudsen, “The interpolation attack on block ciphers,” in Proceedings of the 4th International Workshop on Fast Software Encryption, pp. 28–40, Haifa, Israel, January 1997.
  17. J. Daemen, L. R. Knudsen, and V. Rijmen, “Linear frameworks for block ciphers,” Designs, Codes and Cryptography, vol. 22, no. 1, pp. 65–87, 2001. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  18. M. F. Ezerman, M. Grassl, and P. Solé, “The weights in MDS codes,” IEEE Transactions on Information Theory, vol. 57, no. 1, pp. 392–396, 2011. View at Publisher · View at Google Scholar · View at MathSciNet
  19. I. S. Kotsireas, C. Koukouvinos, and D. E. Simos, “MDS and near-MDS self-dual codes over large prime fields,” Advances in Mathematics of Communications, vol. 3, no. 4, pp. 349–361, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  20. J.-Y. Park, O. Yi, and J.-S. Choi, “Methods for practical whitebox cryptography: a way to use dynamic key updates and high performance white box cryptography with certain mode of operations,” in Proceedings of the International Conference on Information and Communication Technology Convergence (ICTC '10), pp. 474–479, November 2010. View at Publisher · View at Google Scholar · View at Scopus