Table of Contents Author Guidelines Submit a Manuscript
Journal of Applied Mathematics
Volume 2013 (2013), Article ID 584534, 11 pages
http://dx.doi.org/10.1155/2013/584534
Research Article

Thermal Diffusion and Diffusion Thermo Effects on the Viscous Fluid Flow with Heat and Mass Transfer through Porous Medium over a Shrinking Sheet

1Department of Mathematics, Faculty of Education, Ain Shams University, Roxy, Heliopolis, Cairo, Egypt
2Basic Science Department, Higher Technological Institute, 10th of Ramadan City, Egypt

Received 9 February 2013; Revised 16 April 2013; Accepted 18 April 2013

Academic Editor: Magdy A. Ezzat

Copyright © 2013 Nabil Eldabe and Mahmoud Abu Zeid. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. C. Sakiadis, “Boundary-layer behavior on continuous solid surface: I. Boundary-layer equations for two-dimensional and axisymmetric flow,” AIChE Journal, vol. 7, pp. 26–28, 1961. View at Google Scholar
  2. B. C. Sakiadis, “Boundary-layer behavior on continuous solid surface: II. Boundary-layer equations for two-dimensional and axisymmetric flow,” AIChE Journal, vol. 7, pp. 221–225, 1961. View at Google Scholar
  3. L. J. Crane, “Flow past a stretching plate,” Journal of Applied Mathematics and Physics, vol. 21, no. 4, pp. 645–647, 1970. View at Publisher · View at Google Scholar · View at Scopus
  4. P. S. Gupta and A. S. Gupta, “Heat and mass transfer on a stretching sheet with suction or blowing,” The Canadian Journal of Chemical Engineering, vol. 55, pp. 744–746, 1977. View at Publisher · View at Google Scholar
  5. C. K. Chen and M. I. Char, “Heat transfer of a continuous, stretching surface with suction or blowing,” Journal of Mathematical Analysis and Applications, vol. 135, no. 2, pp. 568–580, 1988. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  6. M. Ferdows, M. Ota, A. Sattar, and M. Alam, “Similarity solutions for MHD through vertical porous plate with suction,” Journal of Computational and Applied Mathematics, vol. 6, pp. 15–25, 2005. View at Google Scholar
  7. J. R. Lin, L. J. Liang, and R. D. Chien, “Magneto-hydrodynamic flow of a second order fluid over a stretching sheet with suction,” Journal of the Chinese Institute of Engineers, vol. 30, no. 1, pp. 183–188, 2007. View at Google Scholar · View at Scopus
  8. P. S. Gupta and A. S. Gupta, “Heat and mass transfer on a stretching sheet with suction or blowing,” The Canadian Journal of Chemical Engineering, vol. 55, pp. 744–746, 1977. View at Google Scholar
  9. C. K. Chen and M. I. Char, “Heat transfer of a continuous, stretching surface with suction or blowing,” Journal of Mathematical Analysis and Applications, vol. 135, no. 2, pp. 568–580, 1988. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  10. R. S. R. Gorla, D. E. Abboud, and A. Sarmah, “Magnetohydrodynamic flow over a vertical stretching surface with suction and blowing,” Heat and Mass Transfer, vol. 34, no. 2-3, pp. 121–125, 1998. View at Google Scholar · View at Scopus
  11. S. Yao, T. Fang, and Y. Zhong, “Heat transfer of a generalized stretching/shrinking wall problem with convective boundary conditions,” Communications in Nonlinear Science and Numerical Simulation, vol. 16, no. 2, pp. 752–760, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. T. Fang, S. Yao, and I. Pop, “Flow and heat transfer over a generalized stretching/shrinking wall problem-Exact solutions of the Navier-Stokes equations,” International Journal of Non-Linear Mechanics, vol. 46, pp. 1116–1127, 2011. View at Publisher · View at Google Scholar
  13. T. Fang, “Boundary layer flow over a shrinking sheet with power-law velocity,” International Journal of Heat and Mass Transfer, vol. 51, no. 25-26, pp. 5838–5843, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. T. Fang, W. Liang, and C. F. Lee, “A new solution branch for the Blasius equation— shrinking sheet problem,” Computers & Mathematics with Applications, vol. 56, no. 12, pp. 3088–3095, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  15. T. Fang and J. Zhang, “Closed-form exact solutions of MHD viscous flow over a shrinking sheet,” Communications in Nonlinear Science and Numerical Simulation, vol. 14, no. 7, pp. 2853–2857, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. T. Fang, J. Zhang, and S. Yao, “Slip MHD viscous flow over a stretching sheet—an exact solution,” Communications in Nonlinear Science and Numerical Simulation, vol. 14, no. 11, pp. 3731–3737, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Miklavčič and C. Y. Wang, “Viscous flow due to a shrinking sheet,” Quarterly of Applied Mathematics, vol. 64, no. 2, pp. 283–290, 2006. View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  18. C. Y. Wang, “Stagnation flow towards a shrinking sheet,” International Journal of Non-Linear Mechanics, vol. 43, no. 5, pp. 377–382, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. M. S. Alam and M. M. Rahman, “Dufour and Soret effects on mixed convection flow past a vertical porous flat plate with variable suction,” Nonlinear Analysis. Modelling and Control, vol. 11, no. 1, pp. 3–12, 2006. View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  20. H. A. M. El-Arabawy, “Soret and dufour effects on natural convection flow past a vertical surface in a porous medium with variable surface temperature,” Journal of Mathematics and Statistics, vol. 5, no. 3, pp. 190–198, 2009. View at Publisher · View at Google Scholar · View at Scopus