Table of Contents Author Guidelines Submit a Manuscript
Journal of Applied Mathematics
Volume 2013, Article ID 597981, 15 pages
http://dx.doi.org/10.1155/2013/597981
Research Article

Characterizing Pairwise Social Relationships Quantitatively: Interest-Oriented Mobility Modeling for Human Contacts in Delay Tolerant Networks

The Department of Computer Science & Technology, Xi’an Jiaotong University, No. 28 Xian Ning Road West, Xi’an, Shaanxi 710049, China

Received 19 April 2013; Accepted 20 September 2013

Academic Editor: Chih-Hao Lin

Copyright © 2013 Jiaxu Chen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. R. Maiti, A. Mallya, and N. Ganguly, “Characterizing Mobility Models for Human Movement”.
  2. C. Zhao and M. L. Sichitiu, “N-body: social based mobility model for wireless ad hoc network research,” in Proceedings of the 7th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks (SECON '10), June 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. G. S. Thakur and A. Helmy, “COBRA: A Framework for the Analysis of Realistic Mobility Models,” 2012.
  4. E. Cho, S. A. Myers, and J. Leskovec, “Friendship and mobility: user movement in location-based social networks,” in Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD'11), pp. 1082–1090, August 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. S. Kosta, A. Mei, and J. Stefa, “Large-scale synthetic social mobile networks with SWIM,” IEEE Transactions on Mobile Computing, 2012. View at Publisher · View at Google Scholar
  6. W.-J. Hsu, T. Spyropoulost, K. Psounis, and A. Helmy, “Modeling time-variant user mobility in wireless mobile networks,” in Proceedings of the 26th IEEE International Conference on Computer Communications (INFOCOM '07), pp. 758–766, May 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. I. Rhee, M. Shin, S. Hong, K. Lee, S. J. Kim, and S. Chong, “On the levy-walk nature of human mobility,” IEEE/ACM Transactions on Networking, vol. 19, no. 3, pp. 630–643, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Musolesi and C. Mascolo, “Designing mobility models based on social network theory,” ACM SIGMOBILE Mobile Computing and Communication Review, vol. 11, no. 3, pp. 59–70, 2007. View at Google Scholar
  9. C. Boldrini and A. Passarella, “HCMM: modelling spatial and temporal properties of human mobility driven by users' social relationships,” Computer Communications, vol. 33, no. 9, pp. 1056–1074, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Yang, X. Yang, C. Zhang, and E. Spyrou, “Using social network theory for modeling human mobility,” IEEE Network, vol. 24, no. 5, pp. 6–13, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. T. Abdelkader, K. Naik, A. Nayak, N. Goel, and V. Srivastava, “SGBR: a routing protocol for delay tolerant networks using social grouping,” IEEE Transactions on Parallel and Distributed Systems, 2012. View at Publisher · View at Google Scholar
  12. P. Hui, J. Crowcroft, and E. Yoneki, “BUBBLE Rap: social-based forwarding in delay-tolerant networks,” IEEE Transactions on Mobile Computing, vol. 10, no. 11, pp. 1576–1589, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Mei, G. Morabito, P. Santi, and J. Stefa, “Social-aware stateless forwarding in pocket switched networks,” in Proceedings of the 30th IEEE International Conference on Computer Communications (INFOCOM '11), pp. 251–255, April 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. K. Lee, S. Hong, S. J. Kim, I. Rhee, and S. Chong, “SLAW: a mobility model for human walks,” in Proceedings of the 28th Conference on Computer Communications (INFOCOM '09), pp. 855–863, April 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. A. Munjal, T. Camp, and W. C. . Navidi, “SMOOTH: a simple way to model human walks,” in ACM SIGMOBILE Mobile Computing and Communications Review, pp. 34–36, 2010. View at Google Scholar
  16. A. D. Nguyen, P. Sénac, V. Ramiro, and M. Diaz, “STEPS-an approach for human mobility modeling,” in Proceedings of the 10th International IFIP TC 6 Networking Conference, vol. 6640, pp. 254–265, Springer, Valencia, Spain, 2011.
  17. B. Astuto, A. Nunes, K. Obraczka, and A. Rodrigues, “SAGA: socially-and geography-aware mobility modeling framework,” in Proceedings of the 15th ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems, pp. 367–376, ACM, 2012.
  18. G. S. Thakur, A. Helmy, and W.-J. Hsu, “Similarity analysis and modeling in mobile societies: The missing link,” in Proceedings of the 5th ACM Workshop on Challenged Networks (CHANTS '10), pp. 13–20, September 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. http://crawdad.cs.dartmouth.edu/cambridge/haggle/imote/infocom2006.
  20. http://crawdad.cs.dartmouth.edu/cambridge/haggle/imote/infocom.
  21. http://crawdad.cs.dartmouth.edu/upmc/content/imote/cambridge.
  22. G. Palla, I. Derényi, I. Farkas, and T. Vicsek, “Uncovering the overlapping community structure of complex networks in nature and society,” Nature, vol. 435, no. 7043, pp. 814–818, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. A. Vahdat and D. Becker, “Epidemic routing for partially connected ad hoc networks,” Tech. Rep. CS-200006, Duke University, 2000. View at Google Scholar
  24. T. Spyropoulos, K. Psounis, and C. S. Raghavendra, “Spray and wait: An efficient routing scheme for intermittently connected mobile networks,” in Proceedings of the ACM SIGCOMM Conference on Computer Communications, pp. 252–259, August 2005. View at Scopus
  25. P. Costa, C. Mascolo, M. Musolesi, and G. P. Picco, “Socially-aware routing for publish-subscribe in delay-tolerant mobile ad hoc networks,” IEEE Journal on Selected Areas in Communications, vol. 26, no. 5, pp. 748–760, 2008. View at Publisher · View at Google Scholar · View at Scopus