Table of Contents Author Guidelines Submit a Manuscript
Journal of Applied Mathematics
Volume 2013, Article ID 601652, 4 pages
http://dx.doi.org/10.1155/2013/601652
Research Article

Multiagent Consensus Control under Network-Induced Constraints

1State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027, China
2Kimchaek Industry University, Pyongyang 999093, Republic of Korea

Received 29 March 2013; Accepted 19 August 2013

Academic Editor: Anyi Chen

Copyright © 2013 Won Il Kim et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. O. Saber, J. Fax, and R. Murray, “Consensus and cooperation in networked multi-agent systems,” Proceedings of the IEEE, vol. 95, no. 1, pp. 215–233, 2007. View at Publisher · View at Google Scholar
  2. W. Ren, R. Beard, and E. Atkins, “A survey of consensus problems in multi-agent coordination,” in Proceedings of the American Control Conference (ACC '05), pp. 1859–1864, Portland, Ore, USA, June 2005. View at Publisher · View at Google Scholar
  3. W. Ren, R. Beard, and E. Atkins, “Information consensus in multivehicle cooperative control,” IEEE Control Systems Magazine, vol. 27, no. 2, pp. 71–82, 2007. View at Publisher · View at Google Scholar
  4. Y. Hong, J. Hu, and L. Gao, “Tracking control for multi-agent consensus with an active leader and variable topology,” Automatica, vol. 42, no. 7, pp. 1177–1182, 2006. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  5. X. Li, X. Wang, and G. Chen, “Pinning a complex dynamical network to its equilibrium,” IEEE Transactions on Circuits and Systems, vol. 51, no. 10, pp. 2074–2087, 2004. View at Publisher · View at Google Scholar · View at MathSciNet
  6. X. F. Wang and G. Chen, “Pinning control of scale-free dynamical networks,” Physica A, vol. 310, no. 3-4, pp. 521–531, 2002. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  7. W. Ren, K. Moore, and Y. Chen, “High-order and model reference consensus algorithms in cooperative control of multivehicle systems,” Journal of Dynamic Systems, Measurement, and Control, vol. 129, no. 5, pp. 678–688, 2007. View at Google Scholar
  8. H. Zhang, F. L. Lewis, and A. Das, “Optimal design for synchronization of cooperative systems: state feedback, observer and output feedback,” IEEE Transactions on Automatic Control, vol. 56, no. 8, pp. 1948–1952, 2011. View at Publisher · View at Google Scholar · View at MathSciNet
  9. C.-Q. Ma and J.-F. Zhang, “Necessary and sufficient conditions for consensusability of linear multi-agent systems,” IEEE Transactions on Automatic Control, vol. 55, no. 5, pp. 1263–1268, 2010. View at Publisher · View at Google Scholar · View at MathSciNet
  10. P. Lin and Y. Jia, “Average consensus in networks of multi-agents with both switching topology and coupling time-delay,” Physica A, vol. 387, no. 1, pp. 303–313, 2008. View at Publisher · View at Google Scholar
  11. Y. G. Sun, L. Wang, and G. Xie, “Average consensus in networks of dynamic agents with switching topologies and multiple time-varying delays,” Systems & Control Letters, vol. 57, no. 2, pp. 175–183, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  12. P. Lin, Y. Jia, and L. Li, “Distributed robust H consensus control in directed networks of agents with time-delay,” Systems & Control Letters, vol. 57, no. 8, pp. 643–653, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  13. A. H. Tahoun and H.-J. Fang, “Adaptive stabilisation of networked control systems tolerant to unknown actuator failures,” International Journal of Systems Science, vol. 42, no. 7, pp. 1155–1164, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  14. J. Xiong and J. Lam, “Stabilization of linear systems over networks with bounded packet loss,” Automatica, vol. 43, no. 1, pp. 80–87, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  15. J. Xiong and J. Lam, “Robust H2 control of Markovian jump systems with uncertain switching probabilities,” International Journal of Systems Science, vol. 40, no. 3, pp. 255–265, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  16. Y. Xia, G. P. Liu, M. Fu, and D. Rees, “Predictive control of networked systems with random delay and data dropout,” IET Control Theory Application, vol. 3, pp. 1476–1486, 2009. View at Google Scholar
  17. S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix inequalities in System and Control Theory, vol. 15 of SIAM Studies in Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, Pa, USA, 1994. View at Publisher · View at Google Scholar · View at MathSciNet
  18. L. El Ghaoui and L. Oustry, “A cone complementarity linearization algorithm for static output-feedback and related problems,” IEEE Transactions on Automatic Control, vol. 42, no. 8, pp. 1171–1176, 1997. View at Google Scholar