Table of Contents Author Guidelines Submit a Manuscript
Journal of Applied Mathematics
Volume 2013 (2013), Article ID 643791, 11 pages
http://dx.doi.org/10.1155/2013/643791
Research Article

A New DG Multiobjective Optimization Method Based on an Improved Evolutionary Algorithm

Power Distribution Research Department, China Electric Power Research Institute, No. 15, Xiaoying East Road, Qinghe, Haidian District, Beijing 100192, China

Received 16 January 2013; Revised 19 March 2013; Accepted 21 March 2013

Academic Editor: Ricardo Perera

Copyright © 2013 Wanxing Sheng et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. Zitzler and L. Thiele, “Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach,” IEEE Transactions on Evolutionary Computation, vol. 3, no. 4, pp. 257–271, 1999. View at Google Scholar · View at Scopus
  2. M. A. Abido and N. A. Al-Ali, “Multi-objective optimal power flow using differential evolution,” Arabian Journal for Science and Engineering, vol. 37, no. 4, pp. 991–1005, 2012. View at Google Scholar
  3. M. Varadarajan and K. S. Swarup, “Solving multi-objective optimal power flow using differential evolution,” IET Generation, Transmission and Distribution, vol. 2, no. 5, pp. 720–730, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. C. A. Coello Coello, “Evolutionary multi-objective optimization: a historical view of the field,” IEEE Computational Intelligence Magazine, vol. 1, no. 1, pp. 28–36, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. M. A. Abido, “Multiobjective evolutionary algorithms for electric power dispatch problem,” IEEE Transactions on Evolutionary Computation, vol. 10, no. 3, pp. 315–329, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. G. Celli, E. Ghiani, S. Mocci, and F. Pilo, “A multiobjective evolutionary algorithm for the sizing and siting of distributed generation,” IEEE Transactions on Power Systems, vol. 20, no. 2, pp. 750–757, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. T. Niknam, M. R. Narimani, J. Aghaei et al., “Improved particle swarm optimisation for multi-objective optimal power flow considering the cost, loss, emission and voltage stability index,” IET Generation, Transmission and Distribution, vol. 6, no. 6, pp. 515–527, 2012. View at Google Scholar
  8. P. S. Manoharan, P. S. Kannan, S. Baskar, and M. W. Iruthayarajan, “Penalty parameter-less constraint handling scheme based evolutionary algorithm solutions to economic dispatch,” IET Generation, Transmission and Distribution, vol. 2, no. 4, pp. 478–490, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. Y. Wang and Z. Cai, “Combining multiobjective optimization with differential evolution to solve constrained optimization problems,” IEEE Transactions on Evolutionary Computation, vol. 16, no. 1, pp. 117–134, 2012. View at Google Scholar
  10. A. Darvishi, A. Alimardani, and S. H. Hosseinian, “Fuzzy multi-objective technique integrated with differential evolution method to optimise power factor and total harmonic distortion,” IET Generation, Transmission and Distribution, vol. 5, no. 9, pp. 921–929, 2011. View at Publisher · View at Google Scholar
  11. A. Bhattacharya and P. K. Chattopadhyay, “Hybrid differential evolution with biogeography-based optimization for solution of economic load dispatch,” IEEE Transactions on Power Systems, vol. 25, no. 4, pp. 1955–1964, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. T. Niknam and H. Doagou-Mojarrad, “Multiobjective economic/emission dispatch by multiobjective θ-particle swarm optimisation,” IET Generation, Transmission and Distribution, vol. 6, no. 5, pp. 363–377, 2012. View at Publisher · View at Google Scholar
  13. A. I. Aly, Y. G. Hegazy, and M. A. Alsharkawy, “A simulated annealing algorithm for multi-objective distributed generation planning,” in IEEE Power and Energy Society General Meeting (PES '10), pp. 1–7, July 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. R. S. Maciel and A. Padilha-Feltrin, “Distributed generation impact evaluation using a multi-objective tabu search,” in Proceedings of the 15th International Conference on Intelligent System Applications to Power Systems (ISAP '09), pp. 1–5, November 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. E. B. Cano, “Utilizing fuzzy optimization for distributed generation allocation,” in Proceedings of the 10 Annual International Conference (TENCON '07), pp. 1–4, Taipei, China, October 2007. View at Publisher · View at Google Scholar
  16. C. A. Coello Coello, G. B. Lamont, and D. A. Van Veldhuizen, Evolutionary Algorithms for Solving Multi-Objective Problems, Genetic and Evolutionary Computation Series, Springer, New York, NY, USA, 2nd edition, 2007. View at MathSciNet
  17. Z. Eckart, M. Laumanns, and L. Thiele, “SPEA2: improving the Strength Pareto evolutionary algorithm,” TIK Report 103, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland, 2001. View at Google Scholar
  18. W. Sheng, Y. Liu, X. Meng, and T. Zhang, “An Improved Strength Pareto Evolutionary Algorithm 2 with application to the optimization of distributed generations,” Computers and Mathematics with Applications, vol. 64, no. 5, pp. 944–955, 2012. View at Publisher · View at Google Scholar
  19. Y. H. Wan and S. Adelman, Distributed Utility Technology Cost, Performance, and Environmental Characteristic, United States, National Renewable Energy Laboratory, 1995.
  20. M. AlHajri, Sizing and placement of distributed generation in electrical distribution systems using conventional and heuristic optimization methods [Ph.D. Dissertation], Dalhousie University, Halifax, Canada, 2009.
  21. K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective genetic algorithm: nSGA-II,” IEEE Transactions on Evolutionary Computation, vol. 6, no. 2, pp. 182–197, 2002. View at Publisher · View at Google Scholar · View at Scopus
  22. http://www.tik.ee.ethz.ch/sop/pisa/selectors/nsga2/?page=nsga2.php.