Table of Contents Author Guidelines Submit a Manuscript
Journal of Applied Mathematics
Volume 2013, Article ID 725058, 7 pages
http://dx.doi.org/10.1155/2013/725058
Research Article

Optimal Waveform Selection for Robust Target Tracking

School of Information Science and Engineering, Northeastern University, Shenyang 110004, China

Received 15 May 2013; Accepted 28 June 2013

Academic Editor: Bin Wang

Copyright © 2013 Fengming Xin et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Haykin, “Cognitive radar: a way of the future,” IEEE Signal Processing Magazine, vol. 23, no. 1, pp. 30–40, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. S. Haykin, “Cognition is the key to the next generation of radar systems,” in Proceedings of the 13th IEEE Digital Signal Processing Workshop and 5th IEEE Signal Processing Education Workshop (DSP/SPE '09), pp. 463–467, January 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. S. U. Pillai, D. C. Youla, H. S. Oh, and J. R. Guerci, “Optimum transmit-receiver design in the presence of signal-dependent interference and channel noise,” in Proceedings of the 33rd Asilomar Conference on Signals, Systems, and Computers, vol. 2, pp. 870–875, Pacific Grove, Calif, USA, 1999.
  4. S. U. Pillai, H. S. Oh, D. C. Youla, and J. R. Guerci, “Optimum transmit-receiver design in the presence of signal-dependent interference and channel noise,” IEEE Transactions on Information Theory, vol. 46, no. 2, pp. 577–584, 2000. View at Publisher · View at Google Scholar · View at Scopus
  5. J. R. Guerci and S. U. Pillai, “Theory and application of optimum transmit-receive radar,” in Proceedings of the IEEE International Radar Conference, pp. 705–710, Alexandria, Va, USA, May 2000. View at Scopus
  6. J. R. Guerci and S. U. Pillai, “Adaptive transmission radar: the next “wave”?” in Proceedings of the IEEE National Aerospace and Electronics Conference (NAECON '00), pp. 779–786, Dayton, Ohio, USA, October 2000. View at Scopus
  7. M. R. Bell, “Information theory and radar waveform design,” IEEE Transactions on Information Theory, vol. 39, no. 5, pp. 1578–1597, 1993. View at Publisher · View at Google Scholar · View at Scopus
  8. S. M. Sowelam and A. H. Tewfik, “Waveform selection in radar target classification,” IEEE Transactions on Information Theory, vol. 46, no. 3, pp. 1014–1029, 2000. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Kay, “Waveform design for multistatic radar dsetection,” IEEE Transactions on Aerospace and Electronic Systems, vol. 45, no. 3, pp. 1153–1166, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. N. A. Goodman, P. R. Venkata, and M. A. Neifeld, “Adaptive waveform design and sequential hypothesis testing for target recognition with active sensors,” IEEE Journal on Selected Topics in Signal Processing, vol. 1, no. 1, pp. 105–113, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. R. A. Romero, J. Bae, and N. A. Goodman, “Theory and application of SNR and mutual information matched illumination waveforms,” IEEE Transactions on Aerospace and Electronic Systems, vol. 47, no. 2, pp. 912–927, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. Y. Wei, H. Meng, Y. Liu, and X. Wang, “Radar phase-coded waveform design for extended target recognition under detection constraints,” in Proceedings of the IEEE Radar Conference, pp. 1074–1079, May 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. D. J. Kershaw and R. J. Evans, “Optimal waveform selection for tracking systems,” IEEE Transactions on Information Theory, vol. 40, no. 5, pp. 1536–1550, 1994. View at Publisher · View at Google Scholar · View at Scopus
  14. S. D. Howard, S. Suvorova, and A. Nehorai, “Waveform libraries for radar tracking applications,” in Proceedings of the International Conference on Waveform Diversity and Design, pp. 1–5, Edinburgh, UK, November 2004.
  15. S. Suvorova, S. D. Howard, W. Moran, and R. J. Evans, “Waveform libraries for radar tracking applications: maneuvering targets,” in Proceedings of the 40th Annual Conference on Information Sciences and Systems (CISS '06), pp. 1424–1428, Princeton, NJ, USA, March 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. D. J. Kershaw and R. J. Evans, “Waveform selective probalilistic data association,” IEEE Transactions on Aerospace and Electronic Systems, vol. 33, pp. 1180–1188, 1997. View at Google Scholar
  17. S. P. Sira, A. Papandreou-Suppappola, and D. Morrell, “Dynamic configuration of time-varying waveforms for agile sensing and tracking in clutter,” IEEE Transactions on Signal Processing, vol. 55, no. 7, pp. 3207–3217, 2007. View at Publisher · View at Google Scholar · View at MathSciNet
  18. D. Gu, “A game theory approach to target tracking in sensor networks,” IEEE Transactions on Systems, Man, and Cybernetics, Part B, vol. 41, no. 1, pp. 2–13, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. D. Simon, “A game theory approach to constrained minimax state estimation,” IEEE Transactions on Signal Processing, vol. 54, no. 2, pp. 405–412, 2006. View at Publisher · View at Google Scholar · View at Scopus