Table of Contents Author Guidelines Submit a Manuscript
Journal of Applied Mathematics
Volume 2013 (2013), Article ID 818731, 19 pages
Research Article

Multiproject Resources Allocation Model under Fuzzy Random Environment and Its Application to Industrial Equipment Installation Engineering

1Business School, Sichuan University, Chengdu 610064, China
2State Keylaboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China

Received 12 July 2013; Accepted 7 October 2013

Academic Editor: T. Warren Liao

Copyright © 2013 Jun Gang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


This paper focuses on a multiproject resource allocation problem in a bilevel organization. To solve this problem, a bilevel multiproject resource allocation model under a fuzzy random environment is proposed. Two levels of decision makers are considered in the model. On the upper level, the company manager aims to allocate the company's resources to multiple projects to achieve the lowest cost, which include resource costs and a tardiness penalty. On the lower level, each project manager attempts to schedule their resource-constrained project, with minimization of project duration as the main objective. In contrast to prior studies, uncertainty in resource allocation has been explicitly considered. Specifically, our research uses fuzzy random variables to model uncertain activity durations and resource costs. To search for the optimal solution of the bilevel model, a hybrid algorithm made up of an adaptive particle swarm optimization, an adaptive hybrid genetic algorithm, and a fuzzy random simulation algorithm is also proposed. Finally, the efficiency of the proposed model and algorithm is evaluated through a practical case from an industrial equipment installation company. The results show that the proposed model is efficient in dealing with practical resource allocation problems in a bilevel organization.