Table of Contents Author Guidelines Submit a Manuscript
Journal of Applied Mathematics
Volume 2013, Article ID 848324, 10 pages
http://dx.doi.org/10.1155/2013/848324
Research Article

Application of D-CRDM Method in Columnar Jointed Basalts Failure Analysis

1Key Laboratory of Ministry of Education on Safe Mining of Deep Metal Mines, Northeastern University, Shenyang 110819, China
2East China Hydropower Investigation and Design Institute, CHECC, Hangzhou 310014, China

Received 6 June 2013; Revised 3 August 2013; Accepted 20 August 2013

Academic Editor: Ga Zhang

Copyright © 2013 Changyu Jin et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. X. Yan, W. Y. Xu, W. T. Zheng, W. Wang, A. C. Shi, and G. Y. Wu, “Mechanical characteristics of columnar jointed rock at dam base of Baihetan hydropower station,” Journal of Central South University of Technology, vol. 18, no. 6, pp. 2157–2162, 2011. View at Google Scholar
  2. Y. Wei, M. Xu, W. Wang et al., “Feasibility of columnar jointed basalt used for high-arch dam foundation,” Journal of Rock Mechanics and Geotechnical Engineering, vol. 3, pp. 461–468, 2011. View at Google Scholar
  3. S.-J. Di, W.-Y. Xu, Y. Ning, W. Wang, and G.-Y. Wu, “Macro-mechanical properties of columnar jointed basaltic rock masses,” Journal of Central South University of Technology, vol. 18, no. 6, pp. 2143–2149, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. W. Zhang, J.-P. Chen, C. Liu, R. Huang, M. Li, and Y. Zhang, “Determination of geometrical and structural representative volume elements at the Baihetan dam site,” Rock Mechanics and Rock Engineering, vol. 45, no. 3, pp. 409–419, 2012. View at Publisher · View at Google Scholar · View at Scopus
  5. Z. Yuting, D. Xiuli, and H. Shuling, “Stability evaluation of rock blocks in jointed rock masses considering Earthquake impacts,” Disaster Advances, vol. 5, no. 4, pp. 127–132, 2012. View at Google Scholar
  6. Q. Jiang, J. Zhang, and X. Feng, “Health diagnosis and functional rehabilitation for seismic-damaged tunnel suffered from the Wenchuan earthquake: a case study,” Disaster Advances, vol. 5, no. 4, pp. 738–743, 2012. View at Google Scholar
  7. M. Sagong, D. Park, J. Yoo, and J. S. Lee, “Experimental and numerical analyses of an opening in a jointed rock mass under biaxial compression,” International Journal of Rock Mechanics and Mining Sciences, vol. 48, no. 7, pp. 1055–1067, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Singh and B. Singh, “Modified Mohr-Coulomb criterion for non-linear triaxial and polyaxial strength of jointed rocks,” International Journal of Rock Mechanics and Mining Sciences, vol. 51, pp. 43–52, 2012. View at Publisher · View at Google Scholar · View at Scopus
  9. Y. Ren and H. Yang, “Equivalent analysis of ortho gonalvisco elastic joint edrockvia an adaptive algorithm in time domain,” Finite Elements in Analysis and Design, vol. 46, no. 10, pp. 875–888, 2010. View at Google Scholar
  10. S. Maghous, D. Bernaud, J. Fréard, and D. Garnier, “Elastoplastic behavior of jointed rock masses as homogenized media and finite element analysis,” International Journal of Rock Mechanics and Mining Sciences, vol. 45, no. 8, pp. 1273–1286, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. W. G. Pariseau, “An equivalent plasticity theory for jointed rock masses,” International Journal of Rock Mechanics and Mining Sciences, vol. 36, no. 7, pp. 907–918, 1999. View at Google Scholar · View at Scopus
  12. Z. Yingren, S. Zhujiang, and G. Xiaonan, The Principles of Geotechnical Plastic Mechanics, China Architecture and Building Press, Beijing, China, 2002.