Table of Contents Author Guidelines Submit a Manuscript
Journal of Applied Mathematics
Volume 2013, Article ID 935491, 8 pages
http://dx.doi.org/10.1155/2013/935491
Research Article

Global Robust Attractive and Invariant Sets of Fuzzy Neural Networks with Delays and Impulses

1Center of Engineering Mathematics and Department of Applied Mathematics, Kunming University of Science and Technology, Kunming, Yunnan 650093, China
2Department of Mathematics, Yuxi Normal University, Yuxi, Yunnan 653100, China

Received 15 October 2012; Accepted 21 January 2013

Academic Editor: Huijun Gao

Copyright © 2013 Kaihong Zhao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. J. Hopfield, “Neurons with graded response have collective computational properties like those of two-state neurons,” Proceedings of the National Academy of Sciences of the United States of America, vol. 81, no. 10, pp. 3088–3092, 1984. View at Google Scholar · View at Scopus
  2. B. Kosko, “Bidirectional associative memories,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 18, no. 1, pp. 49–60, 1988. View at Publisher · View at Google Scholar · View at MathSciNet
  3. L. O. Chua and L. Yang, “Cellular neural networks: theory,” IEEE Transactions on Circuits and Systems, vol. 35, no. 10, pp. 1257–1272, 1988. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  4. L.B. Almeida, “Backpropagation in perceptrons with feedback,” in Neural Computers, pp. 199–208, Springer, New York, NY, USA, 1988. View at Google Scholar
  5. F. J. Pineda, “Generalization of back-propagation to recurrent neural networks,” Physical Review Letters, vol. 59, no. 19, pp. 2229–2232, 1987. View at Publisher · View at Google Scholar · View at MathSciNet
  6. R. Rohwer and B. Forrest, “Training time-dependence in neural networks,” in Proceedings of the 1st IEEE International Conference on Neural Networks, pp. 701–708, San Diego, Calif, USA, 1987.
  7. M. Forti and A. Tesi, “New conditions for global stability of neural networks with application to linear and quadratic programming problems,” IEEE Transactions on Circuits and Systems. I, vol. 42, no. 7, pp. 354–366, 1995. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  8. Y. Xia and J. Wang, “A general methodology for designing globally convergent optimization neural networks,” IEEE Transactions on Neural Networks, vol. 9, no. 6, pp. 1331–1343, 1998. View at Google Scholar · View at Scopus
  9. Y. S. Xia and J. Wang, “On the stability of globally projected dynamical systems,” Journal of Optimization Theory and Applications, vol. 106, no. 1, pp. 129–150, 2000. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  10. J.-H. Li, A. N. Michel, and W. Porod, “Analysis and synthesis of a class of neural networks: linear systems operating on a closed hypercube,” IEEE Transactions on Circuits and Systems, vol. 36, no. 11, pp. 1405–1422, 1989. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  11. I. Varga, G. Elek, and S. H. Zak, “On the brain-state-in-a-convex-domain neural models,” Neural Networks, vol. 9, no. 7, pp. 1173–1184, 1996. View at Publisher · View at Google Scholar · View at Scopus
  12. M. A. Cohen and S. Grossberg, “Absolute stability of global pattern formation and parallel memory storage by competitive neural networks,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 13, no. 5, pp. 815–826, 1983. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  13. H. Qiao, J. Peng, Z. B. Xu, and B. Zhang, “A reference model approach to stability analysis of neural networks,” IEEE Transactions on Systems, Man, and Cybernetics, Part B, vol. 33, no. 6, pp. 925–936, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. X. Yang, X. Liao, Y. Tang, and D. J. Evans, “Guaranteed attractivity of equilibrium points in a class of delayed neural networks,” International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, vol. 16, no. 9, pp. 2737–2743, 2006. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  15. H. Zhao, “Global asymptotic stability of Hopfield neural network involving distributed delays,” Neural Networks, vol. 17, no. 1, pp. 47–53, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. J. Cao and J. Wang, “Global asymptotic and robust stability of recurrent neural networks with time delays,” IEEE Transactions on Circuits and Systems I, vol. 52, no. 2, pp. 417–426, 2005. View at Publisher · View at Google Scholar · View at MathSciNet
  17. Z. Huang, X. Wang, and F. Gao, “The existence and global attractivity of almost periodic sequence solution of discrete-time neural networks,” Physics Letters A, vol. 350, no. 3-4, pp. 182–191, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. Z. B. Xu, H. Qiao, J. Peng, and B. Zhang, “A comparative study of two modeling approaches in neural networks,” Neural Networks, vol. 17, no. 1, pp. 73–85, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Wang and L. Wang, “Global asymptotic robust stability of static neural network models with S-type distributed delays,” Mathematical and Computer Modelling, vol. 44, no. 1-2, pp. 218–222, 2006. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  20. P. Li and J. Cao, “Stability in static delayed neural networks: a nonlinear measure approach,” Neurocomputing, vol. 69, no. 13–15, pp. 1776–1781, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. Z. Huang and Y. Xia, “Exponential p-stability of second order Cohen-Grossberg neural networks with transmission delays and learning behavior,” Simulation Modelling Practice and Theory, vol. 15, no. 6, pp. 622–634, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. K. Zhao and Y. Li, “Robust stability analysis of fuzzy neural network with delays,” Mathematical Problems in Engineering, vol. 2009, Article ID 826908, 13 pages, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. R. Yang, H. Gao, and P. Shi, “Novel robust stability criteria for stochastic Hopfield neural networks with time delays,” IEEE Transactions on Systems, Man, and Cybernetics, Part B, vol. 39, no. 2, pp. 467–474, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. R. Yang, Z. Zhang, and P. Shi, “Exponential stability on stochastic neural networks with discrete interval and distributed delays,” IEEE Transactions on Neural Networks, vol. 21, no. 1, pp. 169–175, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. X. Li and J. Shen, “LMI approach for stationary oscillation of interval neural networks with discrete and distributed time-varying delays under impulsive perturbations,” IEEE Transactions on Neural Networks, vol. 21, no. 10, pp. 1555–1563, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. Y. Zhao, L. Zhang, S. Shen, and H. Gao, “Robust stability criterion for discrete-time uncertain markovian jumping neural networks with defective statistics of modes transitions,” IEEE Transactions on Neural Networks, vol. 22, no. 1, pp. 164–170, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. X. W. Li, H. J. Gao, and X. H. Yu, “A Unified Approach to the Stability of Generalized Static Neural Networks With Linear Fractional Uncertainties and Delays,” IEEE Transactions on Systems, Man and Cybernetics, Part B, vol. 41, no. 5, pp. 1275–1286, 2011. View at Google Scholar
  28. H. Dong, Z. Wang, and H. Gao, “Robust H filtering for a class of nonlinear networked systems with multiple stochastic communication delays and packet dropouts,” IEEE Transactions on Signal Processing, vol. 58, no. 4, pp. 1957–1966, 2010. View at Publisher · View at Google Scholar · View at MathSciNet
  29. W. Zhang, Y. Tang, J.-A. Fang, and X. Wu, “Stability of delayed neural networks with time-varying impulses,” Neural Networks, vol. 36, pp. 59–63, 2012. View at Publisher · View at Google Scholar
  30. H. Huang, T. Huang, and X. Chen, “Global exponential estimates of delayed stochastic neural networks with Markovian switching,” Neural Networks, vol. 36, pp. 136–145, 2012. View at Publisher · View at Google Scholar
  31. Q. T. Gan, “Exponential synchronization of stochastic Cohen-Grossberg neural networks with mixed time-varying delays and reactio-diffusion via periodically intermittent control,” Neural Networks, vol. 31, pp. 12–21, 2012. View at Google Scholar
  32. Y. K. Li and C. Wang, “Existence and global exponential stability of equilibrium for discretetime fuzzy BAM neural networks with variable delays and impulses,” Fuzzy Sets and Systems, 2012. View at Publisher · View at Google Scholar
  33. T. Yang and L.-B. Yang, “The global stability of fuzzy cellular neural network,” IEEE Transactions on Circuits and Systems. I, vol. 43, no. 10, pp. 880–883, 1996. View at Publisher · View at Google Scholar · View at MathSciNet
  34. D. Xu and Z. Yang, “Impulsive delay differential inequality and stability of neural networks,” Journal of Mathematical Analysis and Applications, vol. 305, no. 1, pp. 107–120, 2005. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  35. Z. Yang and D. Xu, “Impulsive effects on stability of Cohen-Grossberg neural networks with variable delays,” Applied Mathematics and Computation, vol. 177, no. 1, pp. 63–78, 2006. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  36. R. A. Horn and C. R. Johnson, Topics in Matrix Analysis, vol. 2, Cambridge University Press, Cambridge, UK, 1991. View at Publisher · View at Google Scholar · View at MathSciNet
  37. Y. Li, “Global exponential stability of BAM neural networks with delays and impulses,” Chaos, Solitons and Fractals, vol. 24, no. 1, pp. 279–285, 2005. View at Publisher · View at Google Scholar · View at Scopus