Table of Contents Author Guidelines Submit a Manuscript
Journal of Applied Mathematics
Volume 2013, Article ID 953641, 6 pages
http://dx.doi.org/10.1155/2013/953641
Research Article

Parameter Estimation for Traffic Noise Models Using a Harmony Search Algorithm

1Highway Research Division, SOC Research Institute, Korea Institute of Construction Technology, Goyang-si, Gyeonggi-do 411-712, Republic of Korea
2Department of Transportation & Logistics Engineering, Hanyang University, Ansan-si, Gyeonggi-do 426-791, Republic of Korea
3Department of Civil Engineering, Seoul National University of Science & Technology, Seoul 139-743, Republic of Korea

Received 28 June 2013; Revised 22 September 2013; Accepted 22 September 2013

Academic Editor: Zong Woo Geem

Copyright © 2013 Deok-Soon An et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

A technique has been developed for predicting road traffic noise for environmental assessment, taking into account traffic volume as well as road surface conditions. The ASJ model (ASJ Prediction Model for Road Traffic Noise, 1999), which is based on the sound power level of the noise emitted by the interaction between the road surface and tires, employs regression models for two road surface types: dense-graded asphalt (DGA) and permeable asphalt (PA). However, these models are not applicable to other types of road surfaces. Accordingly, this paper introduces a parameter estimation procedure for ASJ-based noise prediction models, utilizing a harmony search (HS) algorithm. Traffic noise measurement data for four different vehicle types were used in the algorithm to determine the regression parameters for several road surface types. The parameters of the traffic noise prediction models were evaluated using another measurement set, and good agreement was observed between the predicted and measured sound power levels.