Table of Contents Author Guidelines Submit a Manuscript
Journal of Applied Mathematics
Volume 2014, Article ID 362716, 7 pages
http://dx.doi.org/10.1155/2014/362716
Research Article

A New Method of Image Denoising for Underground Coal Mine Based on the Visual Characteristics

1School of Information and Electrical Engineering, China University of Mining and Technology, Xuzhou, Jiangsu 221008, China
2School of Information and Electronic Engineering, Xuzhou Institute of Technology, Xuzhou, Jiangsu 221008, China

Received 15 January 2014; Accepted 12 March 2014; Published 6 April 2014

Academic Editor: Feng Gao

Copyright © 2014 Gang Hua and Daihong Jiang. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. M. Narendra, “A separable median filter for image noise smoothing,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 3, no. 1, pp. 20–29, 1981. View at Google Scholar · View at Scopus
  2. J.-M. He, Q. Li, and Y. Ming, “Realization and performance test of improved median filter,” Computer Systems & Applications, vol. 18, no. 8, pp. 172–174, 2009. View at Google Scholar
  3. W. F. Darsow and E. T. Olsen, “Characterization of idempotent 2-copulas,” Note di Matematica, vol. 30, no. 1, pp. 147–177, 2010. View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  4. J. J. Li, H. Fan, and Y. Wang, “Image denoising algorithm based on dyadic contourlet transform,” Applied Mechanics and Materials, vol. 40-41, pp. 591–597, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. G. Hernandez-Gomez, R. E. Sanchez-Yanez, V. Ayala-Ramirez, and F. E. Correa-Tome, “Natural image segmentation using the CIELab space,” in Proceedings of the 19th International Conference on Electronics Communications and Computers (CONIELECOMP '09), pp. 107–110, February 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. G. Cui, M. R. Luo, B. Rigg, G. Roesler, and K. Witt, “Uniform colour spaces based on the DIN99 colour-difference formula,” Color Research and Application, vol. 27, no. 4, pp. 282–290, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. D.-H. Shin, R.-H. Park, S. Yang, and J.-H. Jung, “Block-based noise estimation using adaptive Gaussian filtering,” IEEE Transactions on Consumer Electronics, vol. 51, no. 1, pp. 218–226, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Gao, C. Li, and D. Bi, “Image enhancement algorithm based on NF-ICM,” Chinese Optics Letters, vol. 8, no. 5, pp. 474–477, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. A. Saffor, A. R. Ramli, and K.-H. Ng, “A comparative study of image compression between JPEG and wavelet,” Malaysian Journal of Computer Science, vol. 14, no. 1, pp. 39–45, 2001. View at Google Scholar · View at Scopus
  10. R. R. Coifinan and D. L. Donoho, “Translation-invariant denoising,” in Wavelet in Statistics, vol. 103 of Lecture Notes in Statistics, pp. 125–150, Springer, New York, NY, USA, 1994. View at Google Scholar
  11. A. G. Bruce and H.-Y. Gao, “WaveShrink with firm shrinkage,” Statistica Sinica, vol. 7, no. 4, pp. 855–874, 1997. View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  12. M. Jansen, M. Malfait, and A. Bultheel, “Generalized cross validation for wavelet thresholding,” Signal Processing, vol. 56, no. 1, pp. 33–44, 1997. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  13. L. Sendur and I. W. Selesnick, “Bivariate shrinkage functions for wavelet-based denoising exploiting interscale dependency,” IEEE Transactions on Signal Processing, vol. 50, no. 11, pp. 2744–2756, 2002. View at Google Scholar
  14. C. S. Lee and Y. H. Kuo, Fuzzy Techniques in Image Processing, vol. 52, Springer, New York, NY, USA, 2000.
  15. C. S. Lee, Y. H. Kuo, and P. T. Yu, “Weighted fuzzy mean filters for image processing,” Fuzzy Sets and Systems, vol. 89, pp. 15–180, 1997. View at Google Scholar
  16. S. H. Wang, L. N. Wu, Y. D. Zhang et al., “Ant colony algorithm used for bankruptcy prediction.,” in Proceedings of the 2nd International Symposium on Information Science and Engineering (ISISE '09), pp. 137–139, Shanghai, China, 2009.
  17. D. S. Levine and M. Aparicio IV, Eds., Neural Networks for Knowledge Representation and Inference, Psychology Press, 2013.
  18. S. Yuying and L. Jingjing, “A semi-implicit image denoising algorithm in matrix form,” Journal of Xuzhou Institute of Technology (Natural Sciences Edition), vol. 27, no. 4, 2012. View at Google Scholar