Table of Contents Author Guidelines Submit a Manuscript
Journal of Applied Mathematics
Volume 2014, Article ID 374285, 8 pages
Research Article

Multiband CCD Image Compression for Space Camera with Large Field of View

Jin Li,1,2 Fei Xing,1,2 Ting Sun,1,2 and Zheng You1,2

1Department of Precision Instruments, The State Key Laboratory of Precision Measurement, Technology and Instruments, Tsinghua University, Beijing 100084, China
2Collaborative Innovation Center for Micro/Nano Fabrication, Device and System, Beijing 100084, China

Received 20 February 2014; Accepted 28 May 2014; Published 6 July 2014

Academic Editor: Shiping Lu

Copyright © 2014 Jin Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Space multiband CCD camera compression encoder requires low-complexity, high-robustness, and high-performance because of its captured images information being very precious and also because it is usually working on the satellite where the resources, such as power, memory, and processing capacity, are limited. However, the traditional compression approaches, such as JPEG2000, 3D transforms, and PCA, have the high-complexity. The Consultative Committee for Space Data Systems-Image Data Compression (CCSDS-IDC) algorithm decreases the average PSNR by 2 dB compared with JPEG2000. In this paper, we proposed a low-complexity compression algorithm based on deep coupling algorithm among posttransform in wavelet domain, compressive sensing, and distributed source coding. In our algorithm, we integrate three low-complexity and high-performance approaches in a deeply coupled manner to remove the spatial redundant, spectral redundant, and bit information redundancy. Experimental results on multiband CCD images show that the proposed algorithm significantly outperforms the traditional approaches.