Table of Contents Author Guidelines Submit a Manuscript
Journal of Applied Mathematics
Volume 2014 (2014), Article ID 686873, 10 pages
http://dx.doi.org/10.1155/2014/686873
Research Article

Large Scale Simulation of Hydrogen Dispersion by a Stabilized Balancing Domain Decomposition Method

1School of Engineering, Sun Yat-Sen University, Guangzhou 510275, China
2School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China

Received 20 February 2014; Accepted 13 April 2014; Published 16 July 2014

Academic Editor: Alicia Cordero

Copyright © 2014 Qing-He Yao and Xin Pan. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. Kanayama, H. Tsukikawa, S. B. Ndong-Mefane, and O. Sakuragi, “Finite element simulation of hydrogen dispersion by the analogy of the boussinesq approximation,” Journal of Computational Science and Technology, vol. 2, no. 4, pp. 643–654, 2008. View at Google Scholar
  2. V. Agarant, Z. Cheng, and A. Tchouvelev, “CFD modeling of hydrogen releases and dispersion in hydrogen energy station,” in Proceedings of the 15th World Hydrogen Energy Conference, 2004.
  3. R. W. Schefer, W. G. Houf, C. San Marchi, W. P. Chernicoff, and L. Englom, “Characterization of leaks from compressed hydrogen dispensing systems and related components,” International Journal of Hydrogen Energy, vol. 31, no. 9, pp. 1247–1260, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. H. A. Olvera and A. R. Choudhuri, “Numerical simulation of hydrogen dispersion in the vicinity of a cubical building in stable stratified atmospheres,” International Journal of Hydrogen Energy, vol. 31, no. 15, pp. 2356–2369, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. K. Matsuura, H. Kanayama, H. Tsukikawa, and M. Inoue, “Numerical simulation of leaking hydrogen dispersion behavior in a partially open space,” International Journal of Hydrogen Energy, vol. 33, no. 1, pp. 240–247, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. J. Choi, N. Hur, S. Kang, E. D. Lee, and K.-B. Lee, “A CFD simulation of hydrogen dispersion for the hydrogen leakage from a fuel cell vehicle in an underground parking garage,” International Journal of Hydrogen Energy, vol. 38, no. 19, pp. 8084–8091, 2013. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Inoue, H. Tsukikawa, H. Kanayama, and K. Matsuura, “Experimental study on leaking hydrogen dispersion in a partially open space,” Journal of Hydrogen Energy Systems Society of Japan, vol. 33, no. 4, pp. 32–43, 2008. View at Google Scholar
  8. H. Kanayama, H. Tsukikawa, and I. Ismail, “Simulation of hydrogen dispersion by the domain decomposition method,” Japan Journal of Industrial and Applied Mathematics, vol. 28, no. 1, pp. 43–53, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  9. H. Kanayama, K. Komori, and D. Sato, “Development of a thermal convection solver with hierarchical domain decomposition method,” in Proceedings of the 8th World Congress on Computational Mechanics (WCCM '08) and the 5th European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS '08), Venice, Italy, June 2008.
  10. H. A. van der Vorst, Iterative Krylov Methods for Large Linear Systems, Cambridge University Press, Cambridge, UK, 2003. View at Publisher · View at Google Scholar · View at MathSciNet
  11. M. Bercovier, O. Pironneau, and V. Sastri, “Finite elements and characteristics for some parabolic-hyperbolic problems,” Applied Mathematical Modelling, vol. 7, no. 2, pp. 89–96, 1983. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  12. J. Douglas and T. F. Russell, “Numerical methods for convection-dominated diffusion problems based on combining the method of characteristics with finite element or finite difference procedures,” SIAM Journal on Numerical Analysis, vol. 19, no. 5, pp. 871–885, 1982. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  13. O. Pironneau, “On the transport-diffusion algorithm and its applications to the Navier-Stokes equations,” Numerische Mathematik, vol. 38, no. 3, pp. 309–332, 1981/82. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  14. T. F. Russell, “Time stepping along characteristics with incomplete iteration for a Galerkin approximation of miscible displacement in porous media,” SIAM Journal on Numerical Analysis, vol. 22, no. 5, pp. 970–1013, 1985. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  15. O. Pironneau, Finite Element Methods for Fluids, John Wiley & Sons, New York, NY, USA, 1989.
  16. A. Toselli and O. B. Widlund, Domain Decomposition Methods—Algorithms and Theory, Springer, Berlin, Germany, 2005. View at MathSciNet
  17. J. Mandel, “Balancing domain decomposition,” Communications in Numerical Methods in Engineering, vol. 9, no. 3, pp. 233–241, 1993. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  18. L. Pavarino and O. Widlund, Balancing Neumann-Neumann Methods for Incompressible Stokes Equations, New York University, 2001.
  19. Q. H. Yao, H. Kanayama, M. Ognio, and H. Notsu, “Incomplete Balancing Domain Decomposition for Large Scale 3-D Non-stationary Incompressible Flow Problems,” in Proceedings of the 9th World Congress on Computational Mechanics and 4th Asian Pacific Congress on Computational Mechanics, vol. 10, 2010.
  20. Q. Yao and Q. Zhu, “A pressure-stabilized lagrange-galerkin method in a parallel domain decomposition system,” Abstract and Applied Analysis, vol. 2013, Article ID 161873, 13 pages, 2013. View at Publisher · View at Google Scholar · View at Scopus
  21. F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, Springer, New York, NY, USA, 1991.
  22. Q.-H. Yao and Q.-Y. Zhu, “Investigation of the contamination control in a cleaning room with a moving AGV by 3D large-scale simulation,” Journal of Applied Mathematics, vol. 2013, Article ID 570237, 10 pages, 2013. View at Publisher · View at Google Scholar · View at Scopus
  23. F. Brezzi and J. Douglas, “Stabilized mixed methods for the Stokes problem,” Numerische Mathematik, vol. 53, no. 1-2, pp. 225–235, 1988. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  24. C. Farhat and F. X. Roux, Implicit Parallel Processing in Structural Mechanics, International Association for Computational Mechanics, North-Holland, Amsterdam, The Netherlands, 1994.
  25. Q. Yao, H. Kanayama, H. Notsu, and M. Ogino, “Balancing domain decomposition for non-stationary incompressible flow problems using a characteristic-curve method,” Journal of Computational Science and Technology, vol. 4, no. 2, pp. 121–135, 2010. View at Google Scholar
  26. R. Shioya, M. Ogino, H. Kanayama, and D. Tagami, “Large scale finite element analysis with a Balancing Domain Decomposition method,” in Progress in Experimental and Computational Mechanics in Engineering, M. Geni and M. Kikuchi, Eds., pp. 21–26, 2003. View at Google Scholar
  27. A. M. M. Mukaddes, M. Ogino, H. Kanayama, and R. Shioya, “A scalable balancing domain decomposition based preconditioner for large scale heat transfer problems,” JSME International Journal B Fluids and Thermal Engineering, vol. 49, no. 2, pp. 533–540, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. Q. H. Yao, H. Kanayama, M. Ognio, and H. Notsu, “Incomplete balancing domain decomposition for large scale 3-D non-stationary incompressible flow problems,” IOP Conference Series: Materials Science and Engineering, vol. 10, no. 1, Article ID 012029, 2010. View at Google Scholar
  29. ADVENTURE Project Home Page, http://adventure.sys.t.u-tokyo.ac.jp/.
  30. Q. Yao, X. Pan, and Q. Zhu, “Numerical simulation of the hydrogen dispersion behavior by a parallel characteristic curve method,” Abstract and Applied Analysis, vol. 2014, Article ID 583532, 8 pages, 2014. View at Publisher · View at Google Scholar