Table of Contents Author Guidelines Submit a Manuscript
Journal of Applied Mathematics
Volume 2014, Article ID 948731, 9 pages
http://dx.doi.org/10.1155/2014/948731
Research Article

Numerical Simulation of Flow and Suspended Sediment Transport in the Distributary Channel Networks

1State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, China
2College of Harbor, Coastal and Offshore Engineering, Hohai University, Nanjing 210098, China
3Guangdong Provincial Bureau of Xijiang River Basin Administration, Zhuhai 519090, China

Received 24 November 2013; Accepted 17 March 2014; Published 13 April 2014

Academic Editor: Y. P. Li

Copyright © 2014 Wei Zhang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Flow and suspended sediment transport in distributary channel networks play an important role in the evolution of deltas and estuaries, as well as the coastal environment. In this study, a 1D flow and suspended sediment transport model is presented to simulate the hydrodynamics and suspended sediment transport in the distributary channel networks. The governing equations for river flow are the Saint-Venant equations and for suspended sediment transport are the nonequilibrium transport equations. The procedure of solving the governing equations is firstly to get the matrix form of the water level and suspended sediment concentration at all connected junctions by utilizing the transformation of the governing equations of the single channel. Secondly, the water level and suspended sediment concentration at all junctions can be obtained by solving these irregular spare matrix equations. Finally, the water level, discharge, and suspended sediment concentration at each river section can be calculated. The presented 1D flow and suspended sediment transport model has been applied to the Pearl River networks and can reproduce water levels, discharges, and suspended sediment concentration with good accuracy, indicating this that model can be used to simulate the hydrodynamics and suspended sediment concentration in the distributary channel networks.