Table of Contents Author Guidelines Submit a Manuscript
Journal of Applied Mathematics
Volume 2015 (2015), Article ID 203404, 9 pages
http://dx.doi.org/10.1155/2015/203404
Research Article

Analytical Solution of Heat Conduction for Hollow Cylinders with Time-Dependent Boundary Condition and Time-Dependent Heat Transfer Coefficient

1Department of Mechanical Engineering, Air Force Institute of Technology, No. 198 Jieshou W. Road, Gangshan Township, Kaohsiung 820, Taiwan
2Department of Mechanical Engineering, National Cheng Kung University, No. 1 University Road, Tainan 701, Taiwan

Received 5 May 2015; Accepted 21 July 2015

Academic Editor: Assunta Andreozzi

Copyright © 2015 Te-Wen Tu and Sen-Yung Lee. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. N. Özisik, “Heat conduction in the cylindrical coordinate system,” in Boundary Value Problems of Heat Conduction, chapter 3, pp. 125–193, International Textbook Company, Scranton, Pa, USA, 1st edition, 1968. View at Google Scholar
  2. V. V. Ivanov and V. V. Salomatov, “On the calculation of the temperature field in solids with variable heat-transfer coefficients,” Journal of Engineering Physics and Thermophysics, vol. 9, no. 1, pp. 63–64, 1965. View at Google Scholar
  3. V. V. Ivanov and V. V. Salomatov, “Unsteady temperature field in solid bodies with variable heat transfer coefficient,” Journal of Engineering Physics and Thermophysics, vol. 11, no. 2, pp. 151–152, 1966. View at Google Scholar
  4. Y. S. Postol'nik, “One-dimensional convective heating with a time-dependent heat-transfer coefficient,” Journal of Engineering Physics and Thermophysics, vol. 18, no. 2, pp. 316–322, 1970. View at Google Scholar
  5. V. N. Kozlov, “Solution of heat-conduction problem with variable heat-exchange coefficient,” Journal of Engineering Physics and Thermophysics, vol. 18, no. 1, pp. 133–138, 1970. View at Google Scholar
  6. N. M. Becker, R. L. Bivins, Y. C. Hsu, H. D. Murphy, A. B. White Jr., and G. M. Wing, “Heat diffusion with time-dependent convective boundary condition,” International Journal for Numerical Methods in Engineering, vol. 19, no. 12, pp. 1871–1880, 1983. View at Publisher · View at Google Scholar · View at Scopus
  7. H. T. Chen, S. L. Sun, H. C. Huang, and S. Y. Lee, “Analytic closed solution for the heat conduction with time dependent heat convection coefficient at one boundary,” Computer Modeling in Engineering & Sciences, vol. 59, no. 2, pp. 107–126, 2010. View at Google Scholar · View at MathSciNet
  8. O. I. Yatskiv, R. M. Shvets', and B. Y. Bobyk, “Thermostressed state of a cylinder with thin near-surface layer having time-dependent thermophysical properties,” Journal of Mathematical Sciences, vol. 187, no. 5, pp. 647–666, 2012. View at Publisher · View at Google Scholar · View at Scopus
  9. Z. J. Holy, “Temperature and stresses in reactor fuel elements due to time- and space-dependent heat-transfer coefficients,” Nuclear Engineering and Design, vol. 18, no. 1, pp. 145–197, 1972. View at Publisher · View at Google Scholar · View at Scopus
  10. M. N. Özisik and R. L. Murray, “On the solution of linear diffusion problems with variable boundary condition parameters,” ASME Journal of Heat Transfer, vol. 96, no. 1, pp. 48–51, 1974. View at Publisher · View at Google Scholar · View at Scopus
  11. M. D. Mikhailov, “On the solution of the heat equation with time dependent coefficient,” International Journal of Heat and Mass Transfer, vol. 18, no. 2, pp. 344–345, 1975. View at Publisher · View at Google Scholar · View at Scopus
  12. R. M. Cotta and C. A. C. Santos, “Nonsteady diffusion with variable coefficients in the boundary conditions,” Journal of Engineering Physics and Thermophysics, vol. 61, no. 5, pp. 1411–1418, 1991. View at Publisher · View at Google Scholar · View at Scopus
  13. R. J. Moitsheki, “Transient heat diffusion with temperature-dependent conductivity and time-dependent heat transfer coefficient,” Mathematical Problems in Engineering, vol. 2008, Article ID 347568, 9 pages, 2008. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  14. S. Chantasiriwan, “Inverse heat conduction problem of determining time-dependent heat transfer coefficient,” International Journal of Heat and Mass Transfer, vol. 42, no. 23, pp. 4275–4285, 1999. View at Publisher · View at Google Scholar · View at Scopus
  15. J. Su and G. F. Hewitt, “Inverse heat conduction problem of estimating time-varying heat transfer coefficient,” Numerical Heat Transfer, Part A: Applications, vol. 45, no. 8, pp. 777–789, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. J. Zueco, F. Alhama, and C. F. G. Fernández, “Inverse problem of estimating time-dependent heat transfer coefficient with the network simulation method,” Communications in Numerical Methods in Engineering, vol. 21, no. 1, pp. 39–48, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. D. Słota, “Using genetic algorithms for the determination of an heat transfer coefficient in three-phase inverse Stefan problem,” International Communications in Heat and Mass Transfer, vol. 35, no. 2, pp. 149–156, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. H.-T. Chen and X.-Y. Wu, “Investigation of heat transfer coefficient in two-dimensional transient inverse heat conduction problems using the hybrid inverse scheme,” International Journal for Numerical Methods in Engineering, vol. 73, no. 1, pp. 107–122, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. T. T. M. Onyango, D. B. Ingham, D. Lesnic, and M. Slodička, “Determination of a time-dependent heat transfer coefficient from non-standard boundary measurements,” Mathematics and Computers in Simulation, vol. 79, no. 5, pp. 1577–1584, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  20. J. Sladek, V. Sladek, P. H. Wen, and Y. C. Hon, “The inverse problem of determining heat transfer coefficients by the meshless local Petrov-Galerkin method,” Computer Modeling in Engineering & Sciences, vol. 48, no. 2, pp. 191–218, 2009. View at Google Scholar · View at Scopus
  21. S. Y. Lee and S. M. Lin, “Dynamic analysis of nonuniform beams with time-dependent elastic boundary conditions,” ASME Journal of Applied Mechanics, vol. 63, no. 2, pp. 474–478, 1996. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Y. Lee, S. Y. Lu, Y. T. Liu, and H. C. Huang, “Exact large deflection of Timoshenko beams with nonlinear boundary conditions,” Computer Modeling in Engineering & Sciences, vol. 33, no. 3, pp. 293–312, 2008. View at Google Scholar · View at Scopus