Table of Contents Author Guidelines Submit a Manuscript
Journal of Applied Mathematics
Volume 2015 (2015), Article ID 275485, 10 pages
http://dx.doi.org/10.1155/2015/275485
Research Article

A Time Scales Approach to Coinfection by Opportunistic Diseases

1Departamento de Física y Matemáticas, Universidad de Alcalá, 28871 Alcalá de Henares, Spain
2Dipartimento di Matematica “Giuseppe Peano”, Università di Torino, Via Carlo Alberto 10, 10123 Torino, Italy

Received 23 October 2014; Accepted 25 March 2015

Academic Editor: Winston Garira

Copyright © 2015 Marcos Marvá et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. F. E. G. Cox, “Concomitant infections, parasites and immune responses,” Parasitology, vol. 122, supplement, pp. S23–S38, 2001. View at Publisher · View at Google Scholar · View at Scopus
  2. E. C. Griffiths, A. B. P. Pedersen, A. Fenton, and O. L. Petchey, “The nature and consequences of coinfection in humans,” Journal of Infection, vol. 63, no. 3, pp. 200–206, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Merrill, Introducing Syndemics: A Critical Systems Approach to Public and Community Health, Wiley, 2009.
  4. C. Kwan and J. D. Ernst, “HIV and tuberculosis: a deadly human syndemic,” Clinical Microbiology Reviews, vol. 24, no. 2, pp. 351–376, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. World Health Organization, WHO Report 2011: Global Tuberculosis Control, 2011.
  6. L. J. Abu-Raddad, P. Patnaik, and J. G. Kublin, “Dual infection with HIV and malaria fuels the spread of both diseases in Sub-Saharan Africa,” Science, vol. 314, no. 5805, pp. 1603–1606, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. E. Ivan, N. J. Crowther, E. Mutimura, L. O. Osuwat, S. Janssen, and M. P. Grobusch, “Helminthic infections rates and malaria in HIV-infected pregnant women on anti-retroviral therapy in Rwanda,” PLoS Neglected Tropical Diseases, vol. 7, no. 8, Article ID e2380, 2013. View at Publisher · View at Google Scholar · View at Scopus
  8. D. A. Herring and L. Sattenspiel, “Social contexts, syndemics, and infectious disease in North Aboriginal populations,” American Journal of Human Biology, vol. 19, no. 2, pp. 190–202, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. D. K. Eaton, R. Lowry, N. D. Brener, L. Kann, L. Romero, and H. Wechsler, “Trends in human immunodeficiency virus- and sexually transmitted disease-related risk behaviors among U.S. high school students, 1991–2009,” American Journal of Preventive Medicine, vol. 40, no. 4, pp. 427–433, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Baron, Ed., Medical Microbiology, The University of Texas Medical Branch at Galveston, Galveston, Tex, USA, 4th edition, 1996.
  11. W. S. Symmers, “Opportunistic infections. The concept of ‘opportunistic infections’,” Proceedings of the Royal Society of Medicine, vol. 58, pp. 341–346, 1965. View at Google Scholar
  12. F. T. Koster, G. C. Curlin, K. N. A. Aziz, and A. Haque, “Synergistic impact of measles and diarrhoea on nutrition and mortality in Bangladesh,” Bulletin of the World Health Organization, vol. 59, no. 6, pp. 901–908, 1981. View at Google Scholar · View at Scopus
  13. M. Zlamy, S. Kofler, D. Orth et al., “The impact of Rotavirus mass vaccination on hospitalization rates, nosocomial Rotavirus gastroenteritis and secondary blood stream infections,” BMC Infectious Diseases, vol. 13, no. 1, article 112, 2013. View at Publisher · View at Google Scholar · View at Scopus
  14. P. Auger, R. Bravo de la Parra, J.-C. Poggiale, E. Sánchez, and T. Nguyen-Huu, “Aggregation of variables and applications to population dynamics,” in Structured Population Models in Biology and Epidemiology, P. Magal and S. Ruan, Eds., vol. 1936 of Lecture Notes in Mathematics, pp. 209–263, Springer, Berlin, Germany, 2008. View at Publisher · View at Google Scholar · View at MathSciNet
  15. P. Auger, J. C. Poggiale, and E. Sánchez, “A review on spatial aggregation methods involving several time scales,” Ecological Complexity, vol. 10, pp. 12–25, 2012. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Marvá, R. Bravo de la Parra, and J. C. Poggiale, “Approximate aggregation of a two time scales periodic multi-strain SIS epidemic model: A patchy environment with fast migrations,” Ecological Complexity, vol. 10, no. 1, pp. 34–41, 2012. View at Publisher · View at Google Scholar · View at Scopus
  17. F. Brauer and C. Castillo-Chávez, Mathematical Models in Population Biology and Epidemiology, vol. 40 of Texts in Applied Mathematics, Springer, New York, NY, USA, 2001. View at Publisher · View at Google Scholar · View at MathSciNet
  18. Y. Kang and C. Castillo-Chavez, “Dynamics of SI models with both horizontal and vertical transmissions as well as Allee effects,” Mathematical Biosciences, vol. 248, pp. 97–116, 2014. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  19. H. McCallum, N. Barlow, and J. Hone, “How should pathogen transmission be modelled?” Trends in Ecology & Evolution, vol. 16, no. 6, pp. 295–300, 2001. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Begon, M. Bennett, R. G. Bowers, N. P. French, S. M. Hazel, and J. Turner, “A clarification of transmission terms in host-microparasite models: numbers, densities and areas,” Epidemiology & Infection, vol. 129, no. 1, pp. 147–153, 2002. View at Publisher · View at Google Scholar · View at Scopus
  21. F. Brauer, “Compartmental models in epidemiology,” in Mathematical Epidemiology, F. Brauer, P. van den Driessche, and J. Wu, Eds., vol. 1945 of Lecture Notes in Mathematics, pp. 19–79, Springer, Berlin, Germany, 2008. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  22. S. Bedhomme, P. Agnew, Y. Vital, C. Sidobre, and Y. Michalakis, “Prevalence-dependent costs of parasite virulence,” PLoS Biology, vol. 3, no. 8, article e262, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. M. Sieber, H. Malchow, and F. M. Hilker, “Disease-induced modification of prey competition in eco-epidemiological models,” Ecological Complexity, vol. 18, pp. 74–82, 2014. View at Publisher · View at Google Scholar · View at Scopus
  24. R. Cavoretto, S. Chaudhuri, A. de Rossi et al., “Approximation of dynamical system's separatrix curves,” in International Conference on Numerical Analysis and Applied Mathematics (ICNAAM '11), T. Simos, G. Psihoyios, C. Tsitouras, and Z. Anastassi, Eds., vol. 1389 of AIP Conference Proceedings, pp. 1220–1223, Halkidiki, Greece, September 2011. View at Publisher · View at Google Scholar
  25. R. Cavoretto, A. de Rossi, E. Perracchione, and E. Venturino, “Reliable approximation of separatrix manifolds in competition models with safety niches,” International Journal of Computer Mathematics, 2014. View at Publisher · View at Google Scholar · View at Scopus