Table of Contents Author Guidelines Submit a Manuscript
Journal of Applied Mathematics
Volume 2015 (2015), Article ID 627351, 11 pages
Research Article

Numerical Study on Similarity of Plume’s Infrared Radiation from Reduced Scaling Solid Rocket

South China University of Technology, Wushan Road, No. 381, Guangzhou 510641, China

Received 7 January 2015; Revised 22 March 2015; Accepted 22 March 2015

Academic Editor: Yogesh Jaluria

Copyright © 2015 Xiaoying Zhang and Rui Li. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Similarity of plume radiation between reduced scaling solid rocket models and full scale ones in ground conditions has been taken for investigation. Flow and radiation of plume from solid rockets with scaling ratio from 0.1 to 1 have been computed. The radiative transfer equation (RTE) is solved by the finite volume method (FVM) in infrared band 2~6 μm. The spectral characteristics of plume gases have been calculated with the weighted-sum-of-gray-gas (WSGG) model, and those of the Al2O3 particles have been solved by the Mie scattering model. Our research shows that, with the decreasing scaling ratio of the rocket engine, the radiation intensity of the plume decreases with 1.5~2.5 power of the scaling ratio. The infrared radiation of the plume gases shows a strong spectral dependency, while that of the Al2O3 particles shows grey property. Spectral radiation intensity of the high temperature core of the solid rocket plume increases greatly in the peak absorption spectrum of plume gases. Al2O3 particle is the major radiation composition in the rocket plume, whose scattering coefficient is much larger than its absorption coefficient. There is good similarity between spectral variations of plumes from different scaling solid rockets. The directional plume radiation rises with the increasing azimuth angle.