Research Article

The Order Classes of 2-Generator -Groups

Algorithm 1

Theorem 7 in GAP’s algorithm.
p:=;;n:=;;order:=p    n;; # Input the values of p and n, where the order of G is p    n
G:=AllSmallGroups(Size,order);;
D:=NumberSmallGroups(order);;
for k in [1..D] do;
   f:=G[k];;m:=Size(MinimalGeneratingSet(f));;WW:=[];;
   if NilpotencyClassOfGroup(f)=2 and m=2 then;
   Add(WW,[1,1]);
   Print(k,") G=",StructureDescription(f), " |G|=",Size(f)," p=",p,"n=",n," N.class
",NilpotencyClassOfGroup(f));
   gg:=MinimalGeneratingSet(f);;
   e:=Identity(f);;
   a:=gg[1];;b:=gg[2];;
   i:=Log(Order(a),p);;j:=Log(Order(b),p);;w:=Maximum(i,j);;
   if i+j=n then;
   m1:=1; m2:=p    n/p    w-1;Add(WW,[p,m1*p    2-1]);
   if w>=2 then;
   Add(WW,[p    2,m2*p    2]);
   fi;
   else;
   m1:=p;m2:=p    (n-w)-p;Add(WW,[p,m1*p    2-1]);
   if w>=2 then;
   Add(WW,[p    2,m2*p    2]);
   fi;
   fi;
   Yw:=p    (n-1)*(p-1);;
   for 1 in [0..(w-3)] do;
   Add(WW,[p    (w-l),Yw/(p    1)]);
   od;
Print("n no. of gen.=",m,", o(a)=",p    i,", o(b)=",p    j,", w=",w,"n OC=",WW,"nn");
fi;od;time;