Table of Contents Author Guidelines Submit a Manuscript
Journal of Automated Methods and Management in Chemistry
Volume 21, Issue 1, Pages 11-15

Determination of μmol l-1 level of iron (III) in natural waters and total iron in drugs by flow injection spectrophotometry

Department of Chemistry, Rani Durgavati University, Pradesh, Jabalpur 482001, Madhya, India

Copyright © 1999 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


The equilibrium problems, characterized by recurring end-points, involved in the reaction of iron (III) with iodide make the batch iodometric determination of iron (III) unsuitable. Since the flow injection determination does not require attainment of steady state either for mixing of reagents or for the chemical reaction, the iodometric determination has been accurately and precisely performed using this technique in the present work. This method does not require any special reagent, including chelating agents or those which are loxic, and has a limit of detection of 0.2 μmol l-1 (11 μg l-1) of iron (III). The interference of fluoride has been avoided by adding zirconyl nitrate to the test sample solution, and of copper (II) by complex formation with 2-mercaptobenzoxazole. The method has been applied to determine iron (III) in natural waters, and total iron in drugs.