Table of Contents Author Guidelines Submit a Manuscript
Journal of Analytical Methods in Chemistry
Volume 2012, Article ID 897872, 6 pages
http://dx.doi.org/10.1155/2012/897872
Research Article

Preliminary Results on the Use of Leather Chrome Shavings for Air Passive Sampling

1Department of Analytical Chemistry, University of Valencia, Research Building, 50th Dr. Moliner Street, 46100 Burjassot, Spain
2Département de Chimie, Faculté des Sciences d'El Jadida, Université Chouaïb Doukkali, B.P. 20, 24000 El Jadida, Morocco

Received 2 May 2012; Revised 18 May 2012; Accepted 2 June 2012

Academic Editor: Kea-Tiong Tang

Copyright © 2012 D. Sanjuán-Herráez et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. C. Carré, A. Vulliermet, and B. Vulliermet, Environment and Tannery, Centre Technique du Cuir, Berger—Levrault, Nancy, France, 1983.
  2. K. Kolomaznik, M. Mladek, F. Langmaier, D. C. Shelly, and M. M. Taylor, “Closed loop for chromium in tannery operation,” The Journal of the American Leather Chemists Association, vol. 98, no. 12, pp. 487–490, 2003. View at Google Scholar · View at Scopus
  3. World Bank, Pollution Prevention and Abatement-Hand Book, Washington, DC, USA, 1999.
  4. I. C. Kantarli and J. Yanik, “Activated carbon from leather shaving wastes and its application in removal of toxic materials,” Journal of Hazardous Materials, vol. 179, no. 1–3, pp. 348–356, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. A. Gammoun, S. Tahiri, A. Albizane, M. Azzi, and M. de La Guardia, “Decontamination of water polluted with oil through the use of tanned solid wastes,” Journal of Environmental Engineering and Science, vol. 6, no. 5, pp. 553–559, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Gammoun, S. Tahiri, A. Albizane et al., “Separation of motor oils, oily wastes and hydrocarbons from contaminated water by sorption on chrome shavings,” Journal of Hazardous Materials, vol. 145, no. 1-2, pp. 148–153, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Tahiri, A. Messaoudi, A. Albizane et al., “Removal of dyes from aqueous solutions by adsorption on chrome-tanned solid wastes generated in the leather industry,” Water Quality Research Journal of Canada, vol. 38, no. 2, pp. 393–411, 2003. View at Google Scholar · View at Scopus
  8. L. Chabaane, S. Tahiri, A. Albizane, M. E. Krati, M. L. Cervera, and M. de la Guardia, “Immobilization of vegetable tannins on tannery chrome shavings and their use for the removal of hexavalent chromium from contaminated water,” Chemical Engineering Journal, vol. 174, no. 1, pp. 310–317, 2011. View at Publisher · View at Google Scholar
  9. H. Lakrafli, S. Tahiri, A. Albizane, and M. E. El Otmani, “Effect of wet blue chrome shaving and buffing dust of leather industry on the thermal conductivity of cement and plaster based materials,” Construction and Building Materials, vol. 30, pp. 590–596, 2012. View at Google Scholar
  10. J. N. Huckins, M. W. Tubergen, and G. K. Manuweera, “Semipermeable membrane devices containing model lipid: a new approach to monitoring the bioavailability of lipophilic contaminants and estimating their bioconcentration potential,” Chemosphere, vol. 20, no. 5, pp. 533–552, 1990. View at Publisher · View at Google Scholar · View at Scopus
  11. J. A. Lebo, J. L. Zajicek, J. N. Huckins, J. D. Petty, and P. H. Peterman, “Use of semipermeable membrane devices for in situ monitoring of polycyclic aromatic hydrocarbons in aquatic environments,” Chemosphere, vol. 25, no. 5, pp. 697–718, 1992. View at Publisher · View at Google Scholar · View at Scopus
  12. J. D. Petty, J. N. Huckins, and J. L. Zajicek, “Application of semipermeable membrane devices (SPMDs) as passive air samplers,” Chemosphere, vol. 27, no. 9, pp. 1609–1624, 1993. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Pastor, M. de la Guardia, and F. A. Esteve-Turrillas, Patent application number P200900912/6. P200900912/6.
  14. S. Ly-Verdú, F. A. Esteve-Turrillas, A. Pastor, and M. de la Guardia, “Determination of volatile organic compounds in contaminated air using semipermeable membrane devices,” Talanta, vol. 80, no. 5, pp. 2041–2048, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. D. Sanjuán-Herráez, Y. Rodríguez-Carrasco, L. Juan-Peiró, A. Pastor, and M. de la Guardia, “Determination of indoor air quality of a phytosanitary plant,” Analytica Chimica Acta, vol. 694, no. 1-2, pp. 67–74, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. F. A. Esteve-Turrillas, S. Ly-Verdú, A. Pastor, and M. de la Guardia, “Development of a versatile, easy and rapid atmospheric monitor for benzene, toluene, ethylbenzene and xylenes determination in air,” Journal of Chromatography A, vol. 1216, no. 48, pp. 8549–8556, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Armenta, S. Garrigues, and M. de la Guardia, “Green analytical chemistry,” TrAC Trends in Analytical Chemistry, vol. 27, no. 6, pp. 497–511, 2008. View at Publisher · View at Google Scholar · View at Scopus