Table of Contents Author Guidelines Submit a Manuscript
Journal of Analytical Methods in Chemistry
Volume 2013 (2013), Article ID 210653, 8 pages
Research Article

Simultaneous Determination of Hormonal Residues in Treated Waters Using Ultrahigh Performance Liquid Chromatography-Tandem Mass Spectrometry

Departamento de Química, Universidad de Las Palmas de Gran Canaria, 35017 Las Palmas de Gran Canaria, Spain

Received 28 December 2012; Accepted 7 February 2013

Academic Editor: Fei Qi

Copyright © 2013 Rayco Guedes-Alonso et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


In the last years, hormone consumption has increased exponentially. Because of that, hormone compounds are considered emerging pollutants since several studies have determinted their presence in water influents and effluents of wastewater treatment plants (WWTPs). In this study, a quantitative method for the simultaneous determination of oestrogens (estrone, 17β-estradiol, estriol, 17α-ethinylestradiol, and diethylstilbestrol), androgens (testosterone), and progestogens (norgestrel and megestrol acetate) has been developed to determine these compounds in wastewater samples. Due to the very low concentrations of target compounds in the environment, a solid phase extraction procedure has been optimized and developed to extract and preconcentrate the analytes. Determination and quantification were performed by ultrahigh performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). The method developed presents satisfactory limits of detection (between 0.15 and 9.35 ng·), good recoveries (between 73 and 90% for the most of compounds), and low relative standard deviations (under 8.4%). Samples from influents and effluents of two wastewater treatment plants of Gran Canaria (Spain) were analyzed using the proposed method, finding several hormones with concentrations ranged from 5 to 300 ng·.