Table of Contents Author Guidelines Submit a Manuscript
Journal of Analytical Methods in Chemistry
Volume 2013, Article ID 350801, 5 pages
http://dx.doi.org/10.1155/2013/350801
Research Article

Combining Electronic Tongue Array and Chemometrics for Discriminating the Specific Geographical Origins of Green Tea

Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China

Received 14 May 2013; Accepted 30 June 2013

Academic Editor: Shao-Nong Chen

Copyright © 2013 Lu Xu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. Xu, D.-H. Deng, and C.-B. Cai, “Predicting the age and type of tuocha tea by fourier transform infrared spectroscopy and chemometric data analysis,” Journal of Agricultural and Food Chemistry, vol. 59, no. 19, pp. 10461–10469, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. Y.-L. Lin, I.-M. Juan, Y.-L. Chen, Y.-C. Liang, and J.-K. Lin, “Composition of polyphenols in fresh tea leaves and associations of their oxygen-radical-absorbing capacity with antiproliferative actions in fibroblast cells,” Journal of Agricultural and Food Chemistry, vol. 44, no. 6, pp. 1387–1394, 1996. View at Google Scholar · View at Scopus
  3. T. Karak and R. M. Bhagat, “Trace elements in tea leaves, made tea and tea infusion: a review,” Food Research International, vol. 43, no. 9, pp. 2234–2252, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. H. Yu, J. Wang, H. Xiao, and M. Liu, “Quality grade identification of green tea using the eigenvalues of PCA based on the E-nose signals,” Sensors and Actuators B, vol. 140, no. 2, pp. 378–382, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. H. Yu and J. Wang, “Discrimination of LongJing green-tea grade by electronic nose,” Sensors and Actuators B, vol. 122, no. 1, pp. 134–140, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. K. Wei, L.-Y. Wang, J. Zhou et al., “Comparison of catechins and purine alkaloids in albino and normal green tea cultivars (Camellia sinensis L.) by HPLC,” Food Chemistry, vol. 130, no. 3, pp. 720–724, 2012. View at Publisher · View at Google Scholar · View at Scopus
  7. L. Escuder-Gilabert and M. Peris, “Review: highlights in recent applications of electronic tongues in food analysis,” Analytica Chimica Acta, vol. 665, no. 1, pp. 15–25, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. L. Sipos, Z. Kovács, V. Sági-Kiss, T. Csiki, Z. Kókai, and A. Fekete, “Discrimination of mineral waters by electronic tongue, sensory evaluation and chemical analysis,” Food Chemistry, vol. 135, no. 4, pp. 2947–2953, 2012. View at Google Scholar
  9. L. Gil-Sánchez, J. Soto, R. Martínez-Máñez, E. Garcia-Breijo, J. Ibáñez, and E. Llobet, “A novel humid electronic nose combined with an electronic tongue for assessing deterioration of wine,” Sensors and Actuators A, vol. 171, no. 2, pp. 152–158, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. R. N. Bleibaum, H. Stone, T. Tan, S. Labreche, E. Saint-Martin, and S. Isz, “Comparison of sensory and consumer results with electronic nose and tongue sensors for apple juices,” Food Quality and Preference, vol. 13, no. 6, pp. 409–422, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Hubert, P. J. Rousseeuw, and S. Verboven, “A fast method for robust principal components with applications to chemometrics,” Chemometrics and Intelligent Laboratory Systems, vol. 60, no. 1-2, pp. 101–111, 2002. View at Publisher · View at Google Scholar · View at Scopus
  12. H.-F. Cui, Z.-H. Ye, L. Xu, X.-S. Fu, C.-W. Fan, and X.-P. Yu, “Automatic and rapid discrimination of cotton genotypes by near infrared spectroscopy and chemometrics,” Journal of Analytical Methods in Chemistry, vol. 2012, Article ID 793468, 7 pages, 2012. View at Publisher · View at Google Scholar
  13. M. Barker and W. Rayens, “Partial least squares for discrimination,” Journal of Chemometrics, vol. 17, no. 3, pp. 166–173, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. R. D. Snee, “Validation of regression models: methods and examples,” Technometrics, vol. 19, pp. 415–428, 1977. View at Google Scholar
  15. Q.-S. Xu and Y.-Z. Liang, “Monte Carlo cross validation,” Chemometrics and Intelligent Laboratory Systems, vol. 56, no. 1, pp. 1–11, 2001. View at Publisher · View at Google Scholar · View at Scopus