Table of Contents Author Guidelines Submit a Manuscript
Journal of Analytical Methods in Chemistry
Volume 2014, Article ID 704971, 6 pages
http://dx.doi.org/10.1155/2014/704971
Research Article

Rapid Discrimination of the Geographical Origins of an Oolong Tea (Anxi-Tieguanyin) by Near-Infrared Spectroscopy and Partial Least Squares Discriminant Analysis

1Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China
2China National Institute of Standardization, Beijing 100191, China

Received 13 April 2014; Revised 26 May 2014; Accepted 9 June 2014; Published 26 June 2014

Academic Editor: Chih-Ching Huang

Copyright © 2014 Si-Min Yan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Y. Zuo, H. Chen, and Y. Deng, “Simultaneous determination of catechins, caffeine and gallic acids in green, oolong, black and pu-erh teas using HPLC with a photodiode array detector,” Talanta, vol. 57, no. 2, pp. 307–316, 2002. View at Publisher · View at Google Scholar · View at Scopus
  2. L.-K. Han, T. Takaku, J. Li, Y. Kimura, and H. Okuda, “Anti-obesity action of oolong tea,” International Journal of Obesity, vol. 23, no. 1, pp. 98–105, 1999. View at Publisher · View at Google Scholar · View at Scopus
  3. Q. Y. Zhu, R. M. Hackman, J. L. Ensunsa, R. R. Holt, and C. L. Keen, “Antioxidative activities of oolong tea,” Journal of Agricultural and Food Chemistry, vol. 50, no. 23, pp. 6929–6934, 2002. View at Publisher · View at Google Scholar · View at Scopus
  4. X. H. Chen, C. G. Zhuang, Y. F. He et al., “Photosynthesis, yield, and chemical composition of Tieguanyin tea plants (Camellia sinensis (L.) O. Kuntze) in response to irrigation treatments,” Agricultural Water Management, vol. 97, no. 3, pp. 419–425, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. X. L. Li and Q. Y. Li, “Search for the situation and prevention model of Anxi Tieguanyin tea's counterfeit and shoddy,” Science Technology and Industry, vol. 10, no. 8, pp. 7–11, 2010. View at Google Scholar
  6. D. M. A. M. Luykx and S. M. van Ruth, “An overview of analytical methods for determining the geographical origin of food products,” Food Chemistry, vol. 107, no. 2, pp. 897–911, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. N. S. Ye, “A minireview of analytical methods for the geographical origin analysis of teas (Camellia sinensis),” Critical Reviews in Food Science and Nutrition, vol. 52, no. 9, pp. 775–780, 2012. View at Publisher · View at Google Scholar · View at Scopus
  8. Y. Liang, J. Lu, L. Zhang, S. Wu, and Y. Wu, “Estimation of black tea quality by analysis of chemical composition and colour difference of tea infusions,” Food Chemistry, vol. 80, no. 2, pp. 283–290, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. D. A. Balentine, S. A. Wiseman, and L. C. M. Bouwens, “The chemistry of tea flavonoids,” Critical Reviews in Food Science and Nutrition, vol. 37, no. 8, pp. 693–704, 1997. View at Publisher · View at Google Scholar · View at Scopus
  10. H. Lachas, R. Richaud, A. A. Herod, D. R. Dugwell, R. Kandiyoti, and K. E. Jarvis, “Determination of 17 trace elements in coal and ash reference materials by ICP-MS applied to milligram sample sizes,” Analyst, vol. 124, no. 2, pp. 177–184, 1999. View at Publisher · View at Google Scholar · View at Scopus
  11. E. Ibañez and A. Cifuentes, “New analytical techniques in food science,” Critical Reviews in Food Science and Nutrition, vol. 41, no. 6, pp. 413–450, 2001. View at Publisher · View at Google Scholar · View at Scopus
  12. K. Ruoff, R. Karoui, E. Dufour et al., “Authentication of the botanical origin of honey by front-face fluorescence spectroscopy. A preliminary study,” Journal of Agricultural and Food Chemistry, vol. 53, no. 5, pp. 1343–1347, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. D. T. Raspe and C. da Silva, “Determination of free fatty acid by FT-NIR spectroscopy in esterification reaction for biodiesel production,” Journal of Energy, vol. 2013, Article ID 301647, 5 pages, 2013. View at Publisher · View at Google Scholar
  14. K. Aaljoki, “Automated quality assurance of online NIR analysers,” Journal of Automated Methods and Management in Chemistry, vol. 2005, no. 2, pp. 44–49, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. H. Owen-Reece, M. Smith, C. E. Elwell, and J. C. Goldstone, “Near infrared spectroscopy,” British Journal of Anaesthesia, vol. 82, no. 3, pp. 418–426, 1999. View at Publisher · View at Google Scholar · View at Scopus
  16. L. Xu, P. T. Shi, X. S. Fu et al., “Protected geographical indication identification of a chinese green tea (anji-white) by near-infrared spectroscopy and chemometric class modeling techniques,” Journal of Spectroscopy, vol. 2013, Article ID 546481, 8 pages, 2013. View at Publisher · View at Google Scholar
  17. X. S. Fu, L. Xu, X. P. Yu, Z. H. Ye, and H. F. Cui, “Robust and automated internal quality grading of a Chinese green tea (Longjing) by near-infrared spectroscopy and chemometrics,” Journal of Spectroscopy, vol. 2013, Article ID 139347, 7 pages, 2013. View at Publisher · View at Google Scholar · View at Scopus
  18. W. A. Stahel, Robuste Schätzungen: Infinitesimale Optimalität und Schätzungen von Kovarianzmatrizen, Swiss Federal Institute of Technology, Zurich, Switzerland, 1981.
  19. R. J. Barnes, M. S. Dhanoa, and S. J. Lister, “Standard normal variate transformation and de-trending of near-infrared diffuse reflectance spectra,” Applied Spectroscopy, vol. 43, no. 5, pp. 772–777, 1989. View at Publisher · View at Google Scholar · View at Scopus
  20. F. Sun, W. Ma, L. Xu et al., “Analytical methods and recent developments in the detection of melamine,” Trends in Analytical Chemistry, vol. 29, no. 11, pp. 1239–1249, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. R. W. Kennard and L. Stone, “Computer aided design of experiments,” Technometrics, vol. 11, no. 1, pp. 137–148, 1969. View at Google Scholar
  22. W. W. Chin, “The partial least squares approach to structural equation modeling,” Modern Methods for Business Research, vol. 295, no. 2, pp. 295–336, 1998. View at Google Scholar
  23. W. W. Chin, B. L. Marcelin, and P. R. Newsted, “A partial least squares latent variable modeling approach for measuring interaction effects: results from a Monte Carlo simulation study and an electronic-mail emotion/adoption study,” Information Systems Research, vol. 14, no. 2, pp. 189–217, 2003. View at Publisher · View at Google Scholar · View at Scopus
  24. D. M. Haaland and E. V. Thomas, “Partial least-squares methods for spectral analyses. 1. Relation to other quantitative calibration methods and the extraction of qualitative information,” Analytical Chemistry, vol. 60, no. 11, pp. 1193–1202, 1988. View at Publisher · View at Google Scholar · View at Scopus
  25. Q. S. Xu and Y. Z. Liang, “Monte Carlo cross validation,” Chemometrics and Intelligent Laboratory Systems, vol. 56, no. 1, pp. 1–11, 2001. View at Publisher · View at Google Scholar · View at Scopus
  26. Q. L. Li, “Investigation on the contents of ash in some teas,” Anhui Agricultural Science Bulletin, vol. 18, no. 7, pp. 31–34, 2012. View at Google Scholar
  27. H. P. Tan, L. Chen, S. R. Ye et al., “Overview of amino acid determinations for tea,” China Measurement Technology, vol. 33, no. 6, pp. 1–4, 2007. View at Google Scholar