Research Article

Qualitative and Quantitative Evaluation of Chemical Constituents from Shuanghuanglian Injection Using Nuclear Magnetic Resonance Spectroscopy

Table 1

The assignments of chemical shifts for 17 components by 1H-NMR and13C-NMR spectra of SHLI (H2O : D2O = 1 : 1).

Metabolitesδ 1H and its assignmentδ 13C and its assignment

Valine [28]3.61 (d, J = 4.8 Hz, α-H), 2.28 (m, β-H), 0.99 (d, J = 7.2 Hz, γ-H3), 0.91 (d, J = 7.2 Hz, γ′-H3)63.4 (α-C), 32.0 (β-C), 20.8 (γ-C), 19.5 (γ′-C), − (C=O)
Glucose [29,30]5.24 (d, J = 3.6 Hz, αH-1), 3.54 (dd, J = 3.0, 10.2 Hz, αH-2), 3.70–3.78 (m, αH-3, αH-6b, βH-6b), 3.39–3.43 (m, αH-4, βH-4), 3.83–3.86 (m, αH-5, αH-6a), 4.65 (d, J = 7.8 Hz, βH-1), 3.25 (dd, J = 8.4, 9.6 Hz, βH-2), 3.45–3.51 (m, βH-3, βH-5), 3.90 (m, βH-6a)95.0 (αC-1), 74.3 (αC-2), 75.7 (αC-3), 72.6 (αC-4), 74.4 (αC-5), 63.5 (αC-6), 98.8 (βC-1), 77.1 (βC-2), 78.7 (βC-3), 72.5 (βC-4), 78.8 (βC-5), 63.7 (βC-6)
Fructose [31, 32]3.66–3.68 (m, α-f H-1), 4.12 (m, α-f H-3), 4.00 (m, α-f H-4, β-p H-5), 4.06 (m, α-f H-5), 3.81–3.85 (m, α-f H-6a), 3.68–3.73 (m, α-f H-6b), 3.60 (d, J = 12.0 Hz, β-f H-1a), 3.56 (d, J = 12.0 Hz, β-f H-1b), 4.12 (m, β-f H-3, H-4), 3.61–3.83 (m, β-f H-5), 3.66–3.82 (m, β-f H-6), 3.72 (d, J = 12.0 Hz, β-p H-1a), 3.57 (d, J = 12.0 Hz, β-p H-1b), 3.80 (d, J = 10.2 Hz, β-p H-3), 3.90 (dd, J = 3.0, 10.2 Hz, β-p H-4), 4.03 (brd, J = 12.6 Hz, β-p H-6a), 3.71 (brd, β-p H-6b)65.8 (α-f C-1), − (α-f C-2), − (α-f C-3), 79.0 (α-f C-4), 84.2 (α-f C-5), 65.6 (α-f C-6), 65.3 (β-f C-1), 104.4 (β-f C-2), 78.3 (β-f C-3), 77.3 (β-f C-4), 83.6 (β-f C-5), 64.1 (β-f C-6), 66.8 (β-p C-1), 101.0 (β-p C-2), 70.5 (β-p C-3), 72.6 (β-p C-4), 72.1 (β-p C-5), 66.2 (β-p C-6)
Mannose [33]5.19 (d, J = 1.2 Hz, αH-1), 3.89–3.95 (m, αH-2, βH-2, βH-6a), 3.81–3.87 (m, αH-3, αH-5, αH-6a), 3.64–3.68 (m, αH-4, βH-3), 3.71–3.78 (m, αH-6b, βH-6b), 4.90 (brs, βH-1), 3.56–3.59 (m, βH-4), 3.36–3.40 (m, βH-5)96.9 (αC-1), 73.6 (αC-2), 73.1 (αC-3), − (αC-4), 75.3 (αC-5), − (αC-6), 96.2 (βC-1), 74.2 (βC-2), 76.0 (βC-3), − (βC-4), 79.1 (βC-5), − (βC-6)
Sucrose [34]5.42 (d, J = 3.6 Hz, H-1), 3.57 (m, H-2), 3.77 (m, H-3), 3.48 (m, H-4), 3.81–3.86 (m, H-5, H-6, H-6′), 3.68 (s, H-1′), 4.22 (d, J = 8.4 Hz, H-3′), 4.06 (m, H-4′), 3.90 (m, H-5′)95.0 (C-1), − (C-2), 75.5 (C-3), 72.1 (C-4), 75.3 (C-5), 63.0 (C-6), 64.2 (C-1′), 106.5 (C-2′), − (C-3′), 76.9 (C-4′), 84.2 (C-5′), 65.3 (C-6′)
Formic acid [35]8.46 (s, H-1)− (C-1)
Succinic acid [35]2.48 (s, H-2, H-3)− (C-1, C-4), − (C-2, C-3)
myo-inositol [36]4.06 (dd, J = 3.0, 3.0 Hz, H-1), 3.54 (dd, J = 3.0, 9.6 Hz, H-2, H-6), 3.63 (dd, J = 9.6, 9.6 Hz, H-3, H-5), 3.28 (dd, J = 9.6, 9.6 Hz, H-4)75.1 (C-1), 74.1(C-2, C-6), 75.3 (C-3, C-5), 77.3 (C-4)
Chlorogenic acid [37]2.16 (m, H-2), 5.27 (m, H-3), 3.85 (dd, J = 3.0, 9.0 Hz, H-4), 4.25 (m, H-5), 2.02 (m, H-6), 7.04 (d, J = 1.8 Hz, H-2′), 6.81 (d, J = 8.4 Hz, H-5′), 6.97 (dd, J = 1.8, 8.4 Hz, H-6′), 7.55 (d, J = 15.6 Hz, H-7′), 6.25 (d, J = 15.6 Hz, H-8′)
Neochlorogenic acid [38]1.93 (m, H-2), 5.36 (m, H-3), 3.96 (m, H-4), 4.16 (m, H-5), 2.04–2.14 (m, H-6), 7.09 (brs, H-2′), 6.84 (d, J = 7.8 Hz, H-5′), 7.02 (dd, J = 1.8, 7.8 Hz, H-6′), 7.55 (d, J = 16.2 Hz, H-7′), 6.34 (d, J = 16.2 Hz, H-8′)
Cryptochlorogenic acid [38]2.03 (m, H-2), 4.30 (m, H-3), 3.96 (m, H-4), 4.90 (m, H-5), 2.16 (m, H-6), 7.06 (d, J = 1.8 Hz, H-2′), 6.83 (d, J = 8.4 Hz, H-5′), 6.99 (dd, J = 1.8, 8.4 Hz, H-6′), 7.55 (d, J = 16.2 Hz, H-7′), 6.33 (d, J = 16.2 Hz, H-8′)
Caffeic acid [31]7.00 (d, J = 1.8 Hz, H-2), 6.78 (d, J = 7.8 Hz, H-5), 6.92 (dd, J = 1.8, 8.4 Hz, H-6), 7.30 (d, J = 16.2 Hz, H-7), 6.22 (d, J = 16.2 Hz, H-8)
Forsythoside A [39]6.82 (brs, H-2), 6.78 (d, J = 7.2 Hz, H-5), 6.72 (brd, J = 7.2 Hz, H-6), 2.81 (t, J = 7.8 Hz, H-7), 4.02 (m, overlapped, H-8a, H-6″a), 3.63–3.83 (m, overlapped, H-8b, H-6″b, H-3‴, H-5‴), 7.00 (d, J = 1.8 Hz, H-2′), 6.84 (d, J = 8.4 Hz, H-5′), 6.92 (dd, J = 2.4, 8.4 Hz, H-6′), 7.50 (d, J = 16.2 Hz, H-7′), 6.22 (d, J = 16.2 Hz, H-8′), 4.44 (d, J = 7.2 Hz, H-1″), 3.34–3.42 (m, overlapped, H-2″, H-4‴), 3.47 (m, H-3″, H-5″), 4.90 (dd, J = 9.6, 9.6 Hz, H-4″), 4.66 (brs, H-1‴), 3.84 (brs, H-2‴), 1.21 (d, J = 6.6 Hz, H-6‴)
Isoforsythiaside A [40]6.82 (brs, H-2), 6.77 (d, J = 7.8 Hz, H-5), 6.72 (dd, J = 1.8, 7.8 Hz, H-6), 2.82 (t, J = 7.8 Hz, H-7), 4.00–4.07 (m, overlapped, H-8a, H-6″a), 3.64–3.83 (m, overlapped, H-8b, H-6″b, H-3‴, H-5‴), 6.98 (brs, H-2′), 6.83 (d, J = 8.4 Hz, H-5′), 6.92 (brd, J = 9.0 Hz, H-6′), 7.48 (d, J = 16.2 Hz, H-7′), 6.25 (d, J = 16.2 Hz, H-8′), 4.57 (d, J = 7.8 Hz, H-1″), 3.44–3.48 (m, overlapped, H-2″, H-4‴), 5.04 (m, H-3″), 3.51 (m, H-4″, H-5″), − (H-1‴), 3.83 (d, J = 1.8 Hz, H-2‴), 1.29 (d, J = 6.6 Hz, H-6‴)
Forsythoside E [41]6.81 (d, J = 1.2 Hz, H-2), 6.83 (d, J = 7.8 Hz, H-5), 6.71 (dd, J = 1.8, 7.8 Hz, H-6), 2.80 (t, J = 7.2 Hz, H-7), 3.97–4.04 (m, overlapped, H-8a, H-6′a), 3.68–3.83 (m, overlapped, H-8b, H-6′b, H-3″, H-5″), 4.42 (d, J = 7.8 Hz, H-1′), 3.25 (dd, J = 8.4, 9.6 Hz, H-2′), 3.51–3.53 (m, overlapped, H-3′-H-5′), − (H-1″), 3.84 (brs, H-2″), 3.36–3.48 (m, H-4″), 1.28 (d, J = 6.0 Hz, H-6″)
Baicalin [42]6.33 (s, H-3), 6.53 (s, H-8), 7.51 (d, J = 7.8 Hz, H-2′, H-6′), 7.30 (t, J = 7.8 Hz, H-3′, H-5′), 7.42 (t, J = 7.8 Hz, H-4′), 5.03 (d, J = 7.2 Hz,H-1″), 3.72 (m, H-2″), 3.71 (m, H-3″), 3.66 (m, H-4″), 3.91 (m, H-5″)167.2 (C-2), 106.4 (C-3), 185.5 (C-4), 148.5 (C-5), 135.1 (C-6), 153.8 (C-7), 96.9 (C-8), 152.6 (C-9), 108.8 (C-10), 132.2 (C-1′), 128.7 (C-2′, C-6′), 131.7 (C-3′, C-5′), 135.1 (C-4′), 102.6 (C-1″), 75.4 (C-2″), 78.0 (C-3″), 74.7 (C-4″), 79.4 (C-5″), 178.0 (C-6″)
Secoxyloganin [43]5.52 (d, J = 5.4 Hz, H-1), 7.53 (brs, H-3), 2.76 (m, H-5, H-2′), 2.30 (dd, J = 8.4, 15.6 Hz, H-6a), 2.53–2.60 (m, H-6b, H-9), 5.70 (ddd, J = 9.6, 10.2, 17.4 Hz, H-8), 5.32 (m, H-10), 4.65 (d, J = 7.8 Hz, H-1′), 3.33 (m, H-3′), 3.21 (m, H-4′), 3.41 (m, H-5′), 3.93 (m, H-6a′), 3.41 (m, H-6b′), 3.72 (s, –OCH3)

Singlet (s), doublet (d), triplet (t), doublet of doublets (dd), doublet of doublets of doublets (ddd), quintet (q), multiplet (m), broad doublet (brd), broad singlet (brs), furanose (f), pyranose (p), proton signal peaks were overlaid in 1H-NMR and carbon signal responses were too low or overlapped in 13C-NMR (−).