Table of Contents Author Guidelines Submit a Manuscript
Journal of Aging Research
Volume 2011 (2011), Article ID 379674, 9 pages
http://dx.doi.org/10.4061/2011/379674
Review Article

Aerobic Exercise and Whole-Body Vibration in Offsetting Bone Loss in Older Adults

1Department of Nutrition, Food and Exercise Sciences, The Florida State University, 120 Convocation Way, 418 Sandels Building, Tallahassee, FL 32306-1493, USA
2College of Medicine, The Florida State University, Tallahassee, FL 32306-4300, USA

Received 24 August 2010; Accepted 2 December 2010

Academic Editor: Ben Hurley

Copyright © 2011 Pei-Yang Liu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. NIH Consensus Development Conference, “Osteoporosis prevention, diagnosis, and therapy,” NIH Consens Statement, vol. 17, no. 1, pp. 1–45, 2000. View at Google Scholar
  2. J. S. Finkelstein, S. E. Brockwell, and S. E. Brockwell, “Bone mineral density changes during the menopause transition in a multiethnic cohort of women,” Journal of Clinical Endocrinology and Metabolism, vol. 93, no. 3, pp. 861–868, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  3. J. V. Lacey, P. J. Mink, and P. J. Mink, “Menopausal hormone replacement therapy and risk of ovarian cancer,” Journal of the American Medical Association, vol. 288, no. 3, pp. 334–341, 2002. View at Google Scholar · View at Scopus
  4. R. Marcus, B. Drinkwater, G. Dalsky, J. Dufek, D. Raab, C. Slemenda, and C. Snow-Harter, “Osteoporosis and exercise in women,” Medicine and Science in Sports and Exercise, vol. 24, no. 6, pp. S301–S307, 1992. View at Google Scholar · View at Scopus
  5. K. M. Chan, M. Anderson, and E. M. C. Lau, “Exercise interventions: defusing the world's osteoporosis time bomb,” Bulletin of the World Health Organization, vol. 81, no. 11, pp. 827–830, 2003. View at Google Scholar · View at Scopus
  6. B. Gutin and M. J. Kasper, “Can vigorous exercise play a role in osteoporosis prevention? A review,” Osteoporosis International, vol. 2, no. 2, pp. 55–69, 1992. View at Google Scholar · View at Scopus
  7. A. Heinonen, H. Sievänen, P. Kannus, P. Oja, M. Pasanen, and I. Vuori, “High-impact exercise and bones of growing girls: a 9-month controlled trial,” Osteoporosis International, vol. 11, no. 12, pp. 1010–1017, 2000. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Hatori, A. Hasegawa, and A. Hasegawa, “The effects of walking at the anaerobic threshold level on vertebral bone loss in postmenopausal women,” Calcified Tissue International, vol. 52, no. 6, pp. 411–414, 1993. View at Publisher · View at Google Scholar · View at Scopus
  9. D. J. Cavanaugh and C. E. Cann, “Brisk walking does not stop bone loss in postmenopausal women,” Bone, vol. 9, no. 4, pp. 201–204, 1988. View at Google Scholar · View at Scopus
  10. C. Rubin, G. Xu, and S. Judex, “The anabolic activity of bone tissue, suppressed by disuse, is normalized by brief exposure to extremely low-magnitude mechanical stimuli,” FASEB Journal, vol. 15, no. 12, pp. 2225–2229, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  11. C. Rubin, A. S. Turner, R. Müller, E. Mittra, K. McLeod, W. Lin, and YI. X. Qin, “Quantity and quality of trabecular bone in the femur are enhanced by a strongly anabolic, noninvasive mechanical intervention,” Journal of Bone and Mineral Research, vol. 17, no. 2, pp. 349–357, 2002. View at Google Scholar · View at Scopus
  12. V. Gilsanz, T. A. L. Wren, M. Sanchez, F. Dorey, S. Judex, and C. Rubin, “Low-level, high-frequency mechanical signals enhance musculoskeletal development of young women with low BMD,” Journal of Bone and Mineral Research, vol. 21, no. 9, pp. 1464–1474, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  13. C. T. Rubin, R. Recker, D. Cullen, J. Ryaby, J. McCabe, and K. McLeod, “Prevention of postmenopausal bone loss by a low-magnitude, high-frequency mechanical stimuli: a clinical trial assessing compliance, efficacy, and safety,” Journal of Bone and Mineral Research, vol. 19, no. 3, pp. 343–351, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  14. C. Delecluse, M. Roelants, and S. Verschueren, “Strength increase after whole-body vibration compared with resistance training,” Medicine and Science in Sports and Exercise, vol. 35, no. 6, pp. 1033–1041, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  15. M. Roelants, C. Delecluse, M. Goris, and S. Verschueren, “Effects of 24 Weeks of Whole Body Vibration Training on Body Composition and Muscle Strength in Untrained Females,” International Journal of Sports Medicine, vol. 25, no. 1, pp. 1–5, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  16. V. K. Goel, H. Park, and W. Kong, “Investigation of vibration characteristics of the ligamentous lumbar spine using the finite element approach,” Journal of Biomechanical Engineering, vol. 116, no. 4, pp. 377–383, 1994. View at Google Scholar · View at Scopus
  17. J. A. D. Anderson, E. O. Otun, and B. J. Sweetman, “Occupational hazards and low back pain,” Reviews on Environmental Health, vol. 7, no. 1-2, pp. 121–160, 1987. View at Google Scholar · View at Scopus
  18. R. Dandanell and K. Engstrom, “Vibration from riveting tools in the frequency range 6 Hz-10 MHz and Raynaud's phenomenon,” Scandinavian Journal of Work, Environment and Health, vol. 12, no. 4, pp. 338–342, 1986. View at Google Scholar · View at Scopus
  19. N. Gusi, A. Raimundo, and A. Leal, “Low-frequency vibratory exercise reduces the risk of bone fracture more than walking: a randomized controlled trial,” BMC Musculoskeletal Disorders, vol. 7, article 92, 2006. View at Publisher · View at Google Scholar · View at PubMed
  20. K. Brooke-Wavell, P. R. M. Jones, and A. E. Hardman, “Brisk walking reduces calcaneal bone loss in post-menopausal women,” Clinical Science, vol. 92, no. 1, pp. 75–80, 1997. View at Google Scholar
  21. M. Y. Chien, Y. T. Wu, A. T. Hsu, R. S. Yang, and J. S. Lai, “Efficacy of a 24-week aerobic exercise program for osteopenic postmenopausal women,” Calcified Tissue International, vol. 67, no. 6, pp. 443–448, 2000. View at Publisher · View at Google Scholar
  22. S. Ebrahim, P. W. Thompson, V. Baskaran, and K. Evans, “Randomized placebo-controlled trial of brisk walking in the prevention of postmenopausal osteoporosis,” Age and Ageing, vol. 26, no. 4, pp. 253–260, 1997. View at Publisher · View at Google Scholar
  23. J. Ilich-Ernst, R. A. Brownbill, M. A. Ludemann, and R. Fu, “Critical factors for bone health in women across the age span: how important is muscle mass?” Medscape women"s health [electronic resource], vol. 7, no. 3, p. 2, 2002. View at Google Scholar
  24. J. Z. Ilich and R. A. Brownbill, “Habitual and low-impact activities are associated with better bone outcomes and lower body fat in older women,” Calcified Tissue International, vol. 83, no. 4, pp. 260–271, 2008. View at Publisher · View at Google Scholar · View at PubMed
  25. J. Iwamoto, T. Takeda, and S. Ichimura, “Beneficial effect of etidronate on bone loss after cessation of exercise in postmenopausal osteoporotic women,” American Journal of Physical Medicine and Rehabilitation, vol. 81, no. 6, pp. 452–457, 2002. View at Publisher · View at Google Scholar
  26. S. Kirk, C. F. Sharp, N. Elbaum, D. B. Endres, S. M. Simons, J. G. Mohler, and R. K. Rude, “Effect of long-distance running on bone mass in women,” Journal of Bone and Mineral Research, vol. 4, no. 4, pp. 515–522, 1989. View at Google Scholar
  27. E. A. Krall and B. Dawson-Hughes, “Walking is related to bone density and rates of bone loss,” American Journal of Medicine, vol. 96, no. 1, pp. 20–26, 1994. View at Publisher · View at Google Scholar
  28. S. R. Lord, J. A. Ward, P. Williams, and E. Zivanovic, “The effects of a community exercise program on fracture risk factors in older women,” Osteoporosis International, vol. 6, no. 5, pp. 361–367, 1996. View at Publisher · View at Google Scholar · View at Scopus
  29. N. E. Lane, J. W. Oehlert, D. A. Bloch, and J. F. Fries, “The relationship of running to osteoarthritis of the knee and hip and bone mineral density of the lumbar spine: a 9 year longitudinal study,” Journal of Rheumatology, vol. 25, no. 2, pp. 334–341, 1998. View at Google Scholar
  30. D. Martin and M. Notelovitz, “Effects of aerobic training on bone mineral density of postmenopausal women,” Journal of Bone and Mineral Research, vol. 8, no. 8, pp. 931–936, 1993. View at Google Scholar
  31. B. A. Michel, N. E. Lane, A. Bjorkengren, D. A. Block, and J. F. Fries, “Impact of running on lumbar bone density: a 5-year longitudinal study,” Journal of Rheumatology, vol. 19, no. 11, pp. 1759–1763, 1992. View at Google Scholar · View at Scopus
  32. M. Y. C. Pang, J. J. Eng, A. S. Dawson, H. A. McKay, and J. E. Harris, “A community-based fitness and mobility exercise program for older adults with chronic stroke: a randomized, controlled trial,” Journal of the American Geriatrics Society, vol. 53, no. 10, pp. 1667–1674, 2005. View at Publisher · View at Google Scholar · View at PubMed
  33. L. Welsh and O. M. Rutherford, “Hip bone mineral density is improved by high-impact aerobic exercise in postmenopausal women and men over 50 years,” European Journal of Applied Physiology and Occupational Physiology, vol. 74, no. 6, pp. 511–517, 1996. View at Publisher · View at Google Scholar
  34. R. A. Wiswell, S. A. Hawkins, H. C. Dreyer, and S. V. Jaque, “Maintenance of BMD in older male runners is independent of changes in training volume or VO(2) peak,” Journals of Gerontology A, vol. 57, no. 4, pp. M203–M208, 2002. View at Google Scholar
  35. S. M. P. Verschueren, M. Roelants, C. Delecluse, S. Swinnen, D. Vanderschueren, and S. Boonen, “Effect of 6-month whole body vibration training on hip density, muscle strength, and postural control in postmenopausal women: a randomized controlled pilot study,” Journal of Bone and Mineral Research, vol. 19, no. 3, pp. 352–359, 2004. View at Publisher · View at Google Scholar · View at PubMed
  36. B. Ezenwa, E. Burns, and C. Wilson, “Multiple vibration intensities and frequencies for bone mineral density improvement,” in Proceedings of the 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS '08), pp. 4186–4189, August 2008.
  37. V. Brewer, B. M. Meyer, and M. S. Keele, “Role of exercise in prevention of involutional bone loss,” Medicine and Science in Sports and Exercise, vol. 15, no. 6, pp. 445–449, 1983. View at Google Scholar
  38. G. A. Kelley, K. S. Kelley, and Z. V. Tran, “Resistance training and bone mineral density in women: a meta-analysis of controlled trials,” American Journal of Physical Medicine and Rehabilitation, vol. 80, no. 1, pp. 65–77, 2001. View at Publisher · View at Google Scholar
  39. T. Y. L. Liu-Ambrose, K. M. Khan, J. J. Eng, A. Heinonen, and H. A. McKay, “Both resistance and agility training increase cortical bone density in 75- to 85-year-old women with low bone mass: a 6-month randomized controlled trial,” Journal of Clinical Densitometry, vol. 7, no. 4, pp. 390–398, 2004. View at Publisher · View at Google Scholar
  40. G. Kelley, “Aerobic exercise and lumbar spine bone mineral density in postmenopausal women: a meta-analysis,” Journal of the American Geriatrics Society, vol. 46, no. 2, pp. 143–152, 1998. View at Google Scholar
  41. G. A. Kelley and K. S. Kelley, “Exercise and bone mineral density at the femoral neck in postmenopausal women: a meta-analysis of controlled clinical trials with individual patient data,” American Journal of Obstetrics and Gynecology, vol. 194, no. 3, pp. 760–767, 2006. View at Publisher · View at Google Scholar · View at PubMed
  42. H. M. Frost, “Bone 'mass' and the 'mechanostat': a proposal,” Anatomical Record, vol. 219, no. 1, pp. 1–9, 1987. View at Google Scholar
  43. M. Martyn-St James and S. Carroll, “Meta-analysis of walking for preservation of bone mineral density in postmenopausal women,” Bone, vol. 43, no. 3, pp. 521–531, 2008. View at Publisher · View at Google Scholar · View at PubMed
  44. K. M. Palombaro, “Effects of walking-only interventions on bone mineral density at various skeletal sites: a meta-analysis,” Journal of Geriatric Physical Therapy, vol. 28, no. 3, pp. 102–107, 2005. View at Google Scholar
  45. E. L. Smith, C. Gilligan, M. McAdam, C. P. Ensign, and P. E. Smith, “Deterring bone loss by exercise intervention in premenopausal and postmenopausal women,” Calcified Tissue International, vol. 44, no. 5, pp. 312–321, 1989. View at Google Scholar
  46. A. Bérard, G. Bravo, and P. Gauthier, “Meta-analysis of the effectiveness of physical activity for the prevention of bone loss in postmenopausal women,” Osteoporosis International, vol. 7, no. 4, pp. 331–337, 1997. View at Publisher · View at Google Scholar
  47. H. M. Frost, “Perspectives: the role of changes in mechanical usage set points in the pathogenesis of osteoporosis,” Journal of Bone and Mineral Research, vol. 7, no. 3, pp. 253–261, 1992. View at Google Scholar
  48. K. T. Borer, K. Fogleman, M. Gross, J. M. La New, and D. Dengel, “Walking intensity for postmenopausal bone mineral preservation and accrual,” Bone, vol. 41, no. 4, pp. 713–721, 2007. View at Publisher · View at Google Scholar · View at PubMed
  49. J. Wolff, The Law of Bone Remodeling, Springer, Berlin, Germany, 1986, translated by Maquet, P and Furlong, R.
  50. C. Palumbo, S. Palazzini, and G. Marotti, “Morphological study of intercellular junctions during osteocyte differentiation,” Bone, vol. 11, no. 6, pp. 401–406, 1990. View at Publisher · View at Google Scholar
  51. C. Rubin, A. S. Turner, S. Bain, C. Mallinckrodt, and K. McLeod, “Low mechanical signals strengthen long bones,” Nature, vol. 412, no. 6847, pp. 603–604, 2001. View at Google Scholar
  52. H. M. Frost, “Muscle, bone, and the Utah paradigm: a 1999 overview,” Medicine and Science in Sports and Exercise, vol. 32, no. 5, pp. 911–917, 2000. View at Google Scholar
  53. S. Srinivasan, D. A. Weimer, S. C. Agans, S. D. Bain, and T. S. Gross, “Low-magnitude mechanical loading becomes osteogenic when rest is inserted between each load cycle,” Journal of Bone and Mineral Research, vol. 17, no. 9, pp. 1613–1620, 2002. View at Google Scholar
  54. S. J. Sample, M. Behan, and M. Behan, “Functional adaptation to loading of a single bone is neuronally regulated and involves multiple bones,” Journal of Bone and Mineral Research, vol. 23, no. 9, pp. 1372–1381, 2008. View at Publisher · View at Google Scholar · View at PubMed
  55. S. von Stengel, W. Kemmler, S. Mayer, K. Engelke, A. Klarner, and W. A. Kalender, “Effect of whole body vibration exercise on osteoporotic risk factors,” Deutsche Medizinische Wochenschrift, vol. 134, no. 30, pp. 1511–1516, 2009. View at Publisher · View at Google Scholar · View at PubMed
  56. J. Flieger, TH. Karachalios, L. Khaldi, P. Raptou, and G. Lyritis, “Mechanical stimulation in the form of vibration prevents postmenopausal bone loss in ovariectomized rats,” Calcified Tissue International, vol. 63, no. 6, pp. 510–514, 1998. View at Publisher · View at Google Scholar
  57. J. Colantoni, D. Freeman, P. Arounleut, E. Kellum, W. K. J. Yu, and M. Hamrick, “Low magnitude vibration can inhibit muscle loss and increase mineralizing bone surfaces in aging mice,” Journal of Bone and Mineral Research, vol. 23, p. S416, 2008. View at Google Scholar
  58. S. Torvinen, P. Kannus, and P. Kannus, “Effect of 8-month vertical whole body vibration on bone, muscle performance, and body balance: a randomized controlled study,” Journal of Bone and Mineral Research, vol. 18, no. 5, pp. 876–884, 2003. View at Publisher · View at Google Scholar · View at PubMed
  59. L. Slatkovska, S. M. H. Alibhai, J. Beyene, and A. M. Cheung, “The efficacy of whole-body vibration in reducing bone in postmenopausal women: a meta-analysis,” Journal of Bone and Mineral Research, vol. 23, p. S473, 2008. View at Google Scholar
  60. C. T. Rubin and L. E. Lanyon, “Regulation of bone mass by mechanical strain magnitude,” Calcified Tissue International, vol. 37, no. 4, pp. 411–417, 1985. View at Google Scholar · View at Scopus
  61. H. M. Frost, “Skeletal structural adaptations to mechanical usage (SATMU): 1. Redefining Wolff's law: the bone modeling problem,” Anatomical Record, vol. 226, no. 4, pp. 403–413, 1990. View at Google Scholar · View at Scopus
  62. YI. X. Qin, W. Lin, and C. Rubin, “The pathway of bone fluid flow as defined by in vivo intramedullary pressure and streaming potential measurements,” Annals of Biomedical Engineering, vol. 30, no. 5, pp. 693–702, 2002. View at Publisher · View at Google Scholar · View at Scopus
  63. C. Rubin, A. S. Turner, C. Mallinckrodt, C. Jerome, K. Mcleod, and S. Bain, “Mechanical strain, induced noninvasively in the high-frequency domain, is anabolic to cancellous bone, but not cortical bone,” Bone, vol. 30, no. 3, pp. 445–452, 2002. View at Publisher · View at Google Scholar · View at Scopus
  64. D. C. Gravelle, C. A. Laughton, N. T. Dhruv, K. D. Katdare, J. B. Niemi, L. A. Lipsitz, and J. J. Collins, “Noise-enhanced balance control in older adults,” NeuroReport, vol. 13, no. 15, pp. 1853–1856, 2002. View at Google Scholar · View at Scopus
  65. P. Cordo, J. T. Ingils, and J. T. Ingils, “Noise in human muscle spindles,” Nature, vol. 383, no. 6603, pp. 769–770, 1996. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  66. C. H. Turner, Y. Takano, and I. Owan, “Aging changes mechanical loading thresholds for bone formation in rats,” Journal of Bone and Mineral Research, vol. 10, no. 10, pp. 1544–1549, 1995. View at Google Scholar · View at Scopus
  67. D. P. Kiel, M. T. Hannan, B. A. Barton et al., “Insights from the conduct of a device trial in older persons: low magnitude mechanical stimulation for musculoskeletal health,” Clinical Trials, vol. 7, no. 4, pp. 354–367, 2010. View at Google Scholar