Table of Contents Author Guidelines Submit a Manuscript
Journal of Aging Research
Volume 2012, Article ID 194821, 20 pages
http://dx.doi.org/10.1155/2012/194821
Review Article

Skeletal Muscle Mitochondria and Aging: A Review

Department of John S. Mclhenny Skeletal Muscle Physiology, Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA 70808, USA

Received 23 March 2012; Accepted 21 May 2012

Academic Editor: Holly M. Brown-Borg

Copyright © 2012 Courtney M. Peterson et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. R. Frontera, V. A. Hughes, K. J. Lutz, and W. J. Evans, “A cross-sectional study of muscle strength and mass in 45- to 78-yr-old men and women,” Journal of Applied Physiology, vol. 71, no. 2, pp. 644–650, 1991. View at Google Scholar · View at Scopus
  2. V. A. Hughes, W. R. Frontera, M. Wood et al., “Longitudinal muscle strength changes in older adults: influence of muscle mass, physical activity, and health,” The Journals of Gerontology A, vol. 56, no. 5, pp. B209–B217, 2001. View at Google Scholar · View at Scopus
  3. B. H. Goodpaster, S. W. Park, T. B. Harris et al., “The loss of skeletal muscle strength, mass, and quality in older adults: the Health, Aging and Body Composition Study,” Journals of Gerontology A, vol. 61, no. 10, pp. 1059–1064, 2006. View at Google Scholar · View at Scopus
  4. M. A. Fiatarone, E. F. O'Neill, N. D. Ryan, K. M. Clements, G. R. Solares, and M. E. Nelson, “Exercise training and nutritional supplementation for physical frailty in very elderly people,” The New England journal of medicine, vol. 330, no. 25, pp. 1769–1775, 1994. View at Publisher · View at Google Scholar
  5. B. H. Goodpaster, P. Chomentowski, B. K. Ward et al., “Effects of physical activity on strength and skeletal muscle fat infiltration in older adults: a randomized controlled trial,” Journal of Applied Physiology, vol. 105, no. 5, pp. 1498–1503, 2008. View at Publisher · View at Google Scholar
  6. M. E. Nelson, M. A. Fiatarone, C. M. Morganti, I. Trice, R. A. Greenberg, and W. J. Evans, “Effects of high-intensity strength training on multiple risk factors for osteoporotic fractures: a randomized controlled trial,” Journal of the American Medical Association, vol. 272, no. 24, pp. 1909–1914, 1994. View at Publisher · View at Google Scholar · View at Scopus
  7. E. J. Metter, N. Lynch, R. Conwit, R. Lindle, J. Tobin, and B. Hurley, “Muscle quality and age: cross-sectional and longitudinal comparisons,” The Journals of Gerontology A, vol. 54, no. 5, pp. B207–B218, 1999. View at Google Scholar · View at Scopus
  8. M. G. Cree, B. R. Newcomer, C. S. Katsanos et al., “Intramuscular and liver triglycerides are increased in the elderly,” The Journal of Clinical Endocrinology and Metabolism, vol. 89, no. 8, pp. 3864–3871, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. A. R. Hipkiss, “Mitochondrial dysfunction, proteotoxicity, and aging: causes or effects, and the possible impact of NAD+-controlled protein glycation,” Advances in Clinical Chemistry, vol. 50, pp. 123–150, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. D. L. Johannsen, K. E. Conley, S. Bajpeyi et al., “Ectopic lipid accumulation and reduced glucose tolerance in elderly adults are accompanied by altered skeletal muscle mitochondrial activity,” The Journal of Clinical Endocrinology and Metabolism, vol. 97, no. 1, pp. 242–250, 2012. View at Publisher · View at Google Scholar
  11. M. Saraste, “Oxidative phosphorylation at the fin de siecle,” Science, vol. 283, no. 5407, pp. 1488–1493, 1999. View at Publisher · View at Google Scholar · View at Scopus
  12. J. O. Holloszy, “Skeletal muscle,“mitochondrial deficiency” does not mediate insulin resistance,” The American Journal of Clinical Nutrition, vol. 89, no. 1, pp. 463S–466S, 2009. View at Publisher · View at Google Scholar
  13. B. F. Miller, M. M. Robinson, M. D. Bruss, M. Hellerstein, and K. L. Hamilton, “A comprehensive assessment of mitochondrial protein synthesis and cellular proliferation with age and caloric restriction,” Aging Cell, vol. 11, no. 1, pp. 150–161, 2012. View at Publisher · View at Google Scholar
  14. M. K. Shigenaga, T. M. Hagen, and B. N. Ames, “Oxidative damage and mitochondrial decay in aging,” Proceedings of the National Academy of Sciences of the United States of America, vol. 91, no. 23, pp. 10771–10778, 1994. View at Google Scholar
  15. A. Terman, T. Kurz, M. Navratil, E. A. Arriaga, and U. T. Brunk, “Mitochondrial turnover and aging of long-lived postmitotic cells: the mitochondrial-lysosomal axis theory of aging,” Antioxidants and Redox Signaling, vol. 12, no. 4, pp. 503–535, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. G. Twig, B. Hyde, and O. S. Shirihai, “Mitochondrial fusion, fission and autophagy as a quality control axis: the bioenergetic view,” Biochimica et Biophysica Acta, vol. 1777, no. 9, pp. 1092–1097, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. G. Twig, A. Elorza, A. J. Molina et al., “Fission and selective fusion govern mitochondrial segregation and elimination by autophagy,” The EMBO Journal, vol. 27, no. 2, pp. 433–446, 2008. View at Publisher · View at Google Scholar
  18. E. Beregi, O. Regius, T. Huttl, and Z. Gobl, “Age-related changes in the skeletal muscle cells,” Zeitschrift fur Gerontologie, vol. 21, no. 2, pp. 83–86, 1988. View at Google Scholar · View at Scopus
  19. P. Poggi, C. Marchetti, and R. Scelsi, “Automatic morphometric analysis of skeletal muscle fibers in the aging man,” Anatomical Record, vol. 217, no. 1, pp. 30–34, 1987. View at Publisher · View at Google Scholar
  20. K. E. Conley, S. A. Jubrias, and P. C. Esselman, “Oxidative capacity and ageing in human muscle,” The Journal of Physiology, vol. 5261, part 1, pp. 203–210, 2000. View at Google Scholar
  21. J. D. Crane, M. C. Devries, A. Safdar, M. J. Hamadeh, and M. A. Tarnopolsky, “The effect of aging on human skeletal muscle mitochondrial and intramyocellular lipid ultrastructure,” The Journals of Gerontology A, vol. 65, no. 2, pp. 119–128, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Nakamura, T. Takamura, N. Matsuzawa-Nagata et al., “Palmitate induces insulin resistance in H4IIEC3 hepatocytes through reactive oxygen species produced by mitochondria,” The Journal of Biological Chemistry, vol. 284, no. 22, pp. 14809–14818, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. D. Harman, “Aging: a theory based on free radical and radiation chemistry.,” Journal of Gerontology, vol. 11, no. 3, pp. 298–300, 1956. View at Google Scholar · View at Scopus
  24. D. Harman, “Free radical theory of aging: an update: increasing the functional life span,” Annals of the New York Academy of Sciences, vol. 1067, pp. 10–21, 2006. View at Publisher · View at Google Scholar
  25. B. Chabi, V. Ljubicic, K. J. Menzies, J. H. Huang, A. Saleem, and D. A. Hood, “Mitochondrial function and apoptotic susceptibility in aging skeletal muscle,” Aging Cell, vol. 7, no. 1, pp. 2–12, 2008. View at Google Scholar
  26. E. Hütter, M. Skovbro, B. Lener et al., “Oxidative stress and mitochondrial impairment can be separated from lipofuscin accumulation in aged human skeletal muscle,” Aging Cell, vol. 6, no. 2, pp. 245–256, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. A. Mansouri, F. L. Muller, Y. Liu et al., “Alterations in mitochondrial function, hydrogen peroxide release and oxidative damage in mouse hind-limb skeletal muscle during aging,” Mechanisms of Ageing and Development, vol. 127, no. 3, pp. 298–306, 2006. View at Publisher · View at Google Scholar
  28. C. S. Yarian, I. Rebrin, and R. S. Sohal, “Aconitase and ATP synthase are targets of malondialdehyde modification and undergo an age-related decrease in activity in mouse heart mitochondria,” Biochemical and Biophysical Research Communications, vol. 330, no. 1, pp. 151–156, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. V. Pesce, A. Cormio, F. Fracasso et al., “Age-related mitochondrial genotypic and phenotypic alterations in human skeletal muscle,” Free Radical Biology and Medicine, vol. 30, no. 11, pp. 1223–1233, 2001. View at Publisher · View at Google Scholar · View at Scopus
  30. M. F. Beal, “Oxidatively modified proteins in aging and disease,” Free Radical Biology & Medicine, vol. 32, no. 9, pp. 797–803, 2002. View at Google Scholar
  31. L. Staunton, K. O'Connell, and K. Ohlendieck, “Proteomic profiling of mitochondrial enzymes during skeletal muscle aging,” Journal of Aging Research, vol. 2011, Article ID 908035, 9 pages, 2011. View at Publisher · View at Google Scholar
  32. Y. Kushnareva, A. N. Murphy, and A. Andreyev, “Complex I-mediated reactive oxygen species generation: modulation by cytochrome c and NAD(P)+ oxidation-reduction state,” The Biochemical Journal, vol. 368, part 2, pp. 545–553, 2002. View at Publisher · View at Google Scholar
  33. E. Barreiro, C. Coronell, B. Laviña, A. Ramírez-Sarmiento, M. Orozco-Levi, and J. Gea, “Aging, sex differences, and oxidative stress in human respiratory and limb muscles,” Free Radical Biology and Medicine, vol. 41, no. 5, pp. 797–809, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. L. L. Ji, D. Dillon, and E. Wu, “Alteration of antioxidant enzymes with aging in rat skeletal muscle and liver,” The American Journal of Physiology, vol. 258, no. 4, part 2, pp. 918–923, 1990. View at Google Scholar
  35. T. A. Luhtala, E. B. Roecker, T. Pugh, R. J. Feuers, and R. Weindruch, “Dietary restriction attenuates age-related increases in rat skeletal muscle antioxidant enzyme activities,” Journals of Gerontology, vol. 49, no. 5, pp. B231–B238, 1994. View at Google Scholar · View at Scopus
  36. T. Armeni, G. Principato, J. L. Quiles, C. Pieri, S. Bompadre, and M. Battino, “Mitochondrial dysfunctions during aging: vitamin E deficiency or caloric restriction—two different ways of modulating stress,” Journal of Bioenergetics and Biomembranes, vol. 35, no. 2, pp. 181–191, 2003. View at Publisher · View at Google Scholar · View at Scopus
  37. J. Ren, Q. Li, S. Wu, S. Y. Li, and S. A. Babcock, “Cardiac overexpression of antioxidant catalase attenuates aging-induced cardiomyocyte relaxation dysfunction,” Mechanisms of Ageing and Development, vol. 128, no. 3, pp. 276–285, 2007. View at Google Scholar
  38. E. Xia, G. Rao, H. Van Remmen, A. R. Heydari, and A. Richardson, “Activities of antioxidant enzymes in various tissues of male Fischer 344 rats are altered by food restriction,” Journal of Nutrition, vol. 125, no. 2, pp. 195–201, 1995. View at Google Scholar · View at Scopus
  39. A. Safdar, M. J. Hamadeh, J. J. Kaczor, S. Raha, J. Debeer, and M. A. Tarnopolsky, “Aberrant mitochondrial homeostasis in the skeletal muscle of sedentary older adults,” PLoS ONE, vol. 5, no. 5, p. e10778, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. H. Y. Lee, C. S. Choi, A. L. Birkenfeld, T. C. Alves, F. R. Jornayvaz, and M. J. Jurczak, “Targeted expression of catalase to mitochondria prevents age-associated reductions in mitochondrial function and insulin resistance,” Cell Metabolism, vol. 12, no. 6, pp. 668–674, 2010. View at Google Scholar
  41. S. Iossa, M. P. Mollica, L. Lionetti, R. Crescenzo, R. Tasso, and G. Liverini, “A possible link between skeletal muscle mitochondrial efficiency and age-induced insulin resistance,” Diabetes, vol. 53, no. 11, pp. 2861–2866, 2004. View at Publisher · View at Google Scholar · View at Scopus
  42. D. J. Marcinek, K. A. Schenkman, W. A. Ciesielski, D. Lee, and K. E. Conley, “Reduced mitochondrial coupling in vivo alters cellular energetics in aged mouse skeletal muscle,” The Journal of Physiology, vol. 569, part 2, pp. 467–473, 2005. View at Publisher · View at Google Scholar
  43. C. E. Amara, E. G. Shankland, S. A. Jubrias, D. J. Marcinek, M. J. Kushmerick, and K. E. Conley, “Mild mitochondrial uncoupling impacts cellular aging in human muscles in vivo,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 3, pp. 1057–1062, 2007. View at Publisher · View at Google Scholar · View at Scopus
  44. M. F. Lopez, B. S. Kristal, E. Chernokalskaya, A. Lazarev, A. I. Shestopalov, A. Bogdanova et al., “High-throughput profiling of the mitochondrial proteome using affinity fractionation and automation,” Electrophoresis, vol. 21, no. 16, pp. 3427–3440, 2000. View at Google Scholar
  45. S. Calvo, M. Jain, X. Xie, S. A. Sheth, B. Chang, O. A. Goldberger et al., “Systematic identification of human mitochondrial disease genes through integrative genomics,” Nature Genetics, vol. 38, no. 5, pp. 576–582, 2006. View at Publisher · View at Google Scholar
  46. S. Anderson, A. T. Bankier, B. G. Barrell, M. H. de Bruijn, A. R. Coulson, J. Drouin et al., “Sequence and organization of the human mitochondrial genome,” Nature, vol. 290, no. 5806, pp. 457–465, 1981. View at Google Scholar
  47. E. V. Menshikova, V. B. Ritov, L. Fairfull, R. E. Ferrell, D. E. Kelley, and B. H. Goodpaster, “Effects of exercise on mitochondrial content and function in aging human skeletal muscle,” Journals of Gerontology A, vol. 61, no. 6, pp. 534–540, 2006. View at Google Scholar · View at Scopus
  48. K. R. Short, M. L. Bigelow, J. Kahl, R. Singh, J. Coenen-Schimke, S. Raghavakaimal et al., “Decline in skeletal muscle mitochondrial function with aging in humans. .,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 15, pp. 5618–5623, 2005. View at Publisher · View at Google Scholar
  49. S. Welle, K. Bhatt, B. Shah, N. Needler, J. M. Delehanty, and C. A. Thornton, “Reduced amount of mitochondrial DNA in aged human muscle,” Journal of Applied Physiology, vol. 94, no. 4, pp. 1479–1484, 2003. View at Publisher · View at Google Scholar
  50. I. R. Lanza, D. K. Short, K. R. Short, S. Raghavakaimal, R. Basu, M. J. Joyner et al., “Endurance exercise as a countermeasure for aging,” Diabetes, vol. 57, no. 11, pp. 2933–2942, 2008. View at Publisher · View at Google Scholar
  51. A. Barrientos, J. Casademont, F. Cardellach et al., “Qualitative and quantitative changes in skeletal muscle mtDNA and expression of mitochondrial-encoded genes in the human aging process,” Biochemical and Molecular Medicine, vol. 62, no. 2, pp. 165–171, 1997. View at Publisher · View at Google Scholar · View at Scopus
  52. R. Barazzoni, K. R. Short, and K. S. Nair, “Effects of aging on mitochondrial DNA copy number and cytochrome c oxidase gene expression in rat skeletal muscle, liver, and heart,” Journal of Biological Chemistry, vol. 275, no. 5, pp. 3343–3347, 2000. View at Publisher · View at Google Scholar · View at Scopus
  53. D. McKenzie, E. Bua, S. McKiernan, Z. Cao, J. Wanagat, and J. M. Aiken, “Mitochondrial DNA deletion mutations: a causal role in sarcopenia,” European Journal of Biochemistry, vol. 269, no. 8, pp. 2010–2015, 2002. View at Publisher · View at Google Scholar · View at Scopus
  54. K. Khrapko and J. Vijg, “Mitochondrial DNA mutations and aging: devils in the details?” Trends in Genetics, vol. 25, no. 2, pp. 91–98, 2009. View at Publisher · View at Google Scholar
  55. E. Bua, J. Johnson, A. Herbst et al., “Mitochondrial DNA-deletion mutations accumulate intracellularly to detrimental levels in aged human skeletal muscle fibers,” American Journal of Human Genetics, vol. 79, no. 3, pp. 469–480, 2006. View at Publisher · View at Google Scholar · View at Scopus
  56. B. Chabi, B. Mousson de Camaret, A. Chevrollier, S. Boisgard, and G. Stepien, “Random mtDNA deletions and functional consequence in aged human skeletal muscle,” Biochemical and Biophysical Research Communications, vol. 332, no. 2, pp. 542–549, 2005. View at Publisher · View at Google Scholar · View at Scopus
  57. S. Melov, J. M. Shoffner, A. Kaufman, and D. C. Wallace, “Marked increase in the number and variety of mitochondrial DNA rearrangements in aging human skeletal muscle,” Nucleic Acids Research, vol. 23, no. 20, pp. 4122–4126, 1995. View at Google Scholar · View at Scopus
  58. J. M. Cooper, V. M. Mann, and A. H. V. Schapira, “Analyses of mitochondrial respiratory chain function and mitochondrial DNA deletion in human skeletal muscle: effect of ageing,” Journal of the Neurological Sciences, vol. 113, no. 1, pp. 91–98, 1992. View at Publisher · View at Google Scholar · View at Scopus
  59. F. Pallotti, X. Chen, E. Bonilla, and E. A. Schon, “Evidence that specific mtDNA point mutations may not accumulate in skeletal muscle during normal human aging,” American Journal of Human Genetics, vol. 59, no. 3, pp. 591–602, 1996. View at Google Scholar · View at Scopus
  60. Y. Wang, Y. Michikawa, C. Mallidis, Y. Bai, L. Woodhouse, K. E. Yarasheski et al., “Muscle-specific mutations accumulate with aging in critical human mtDNA control sites for replication,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 7, pp. 4022–4027, 2001. View at Publisher · View at Google Scholar
  61. Y. Michikawa, F. Mazzucchelli, N. Bresolin, G. Scarlato, and G. Attardi, “Aging-dependent large accumulation of point mutations in the human mtDNA control region for replication,” Science, vol. 286, no. 5440, pp. 774–779, 1999. View at Publisher · View at Google Scholar · View at Scopus
  62. J. Wanagat, Z. Cao, P. Pathare, and J. M. Aiken, “Mitochondrial DNA deletion mutations colocalize with segmental electron transport system abnormalities, muscle fiber atrophy, fiber splitting, and oxidative damage in sarcopenia,” The FASEB Journal, vol. 15, no. 2, pp. 322–332, 2001. View at Publisher · View at Google Scholar · View at Scopus
  63. K. Torii, S. Sugiyama, M. Tanaka, K. Takagi, Y. Hanaki, K. Iida et al., “Aging-associated deletions of human diaphragmatic mitochondrial DNA,” American Journal of Respiratory Cell and Molecular Biology, vol. 6, no. 5, pp. 543–549, 1992. View at Google Scholar
  64. P. Fattoretti, J. Vecchiet, G. Felzani et al., “Succinic dehydrogenase activity in human muscle mitochondria during aging: a quantitative cytochemical investigation,” Mechanisms of Ageing and Development, vol. 122, no. 15, pp. 1841–1848, 2001. View at Publisher · View at Google Scholar · View at Scopus
  65. V. A. Bohr, T. Stevnsner, and N. C. de Souza-Pinto, “Mitochondrial DNA repair of oxidative damage in mammalian cells,” Gene, vol. 286, no. 1, pp. 127–134, 2002. View at Publisher · View at Google Scholar · View at Scopus
  66. F. M. Yakes and B. Van Houten, “Mitochondrial DNA damage is more extensive and persists longer than nuclear DNA damage in human cells following oxidative stress,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 2, pp. 514–519, 1997. View at Publisher · View at Google Scholar · View at Scopus
  67. N. G. Larsson, “Somatic mitochondrial DNA mutations in mammalian aging,” Annual Review of Biochemistry, vol. 79, pp. 683–706, 2010. View at Publisher · View at Google Scholar
  68. C. Meissner, “Mutations of mitochondrial DNA—cause or consequence of the ageing process?” Z Gerontol Geriatr, vol. 40, no. 5, pp. 325–333, 2007. View at Publisher · View at Google Scholar
  69. A. Hiona and C. Leeuwenburgh, “The role of mitochondrial DNA mutations in aging and sarcopenia: implications for the mitochondrial vicious cycle theory of aging,” Experimental Gerontology, vol. 43, no. 1, pp. 24–33, 2008. View at Publisher · View at Google Scholar · View at Scopus
  70. K. E. Conley, D. J. Marcinek, and J. Villarin, “Mitochondrial dysfunction and age,” Current Opinion in Clinical Nutrition and Metabolic Care, vol. 10, no. 6, pp. 688–692, 2007. View at Google Scholar
  71. E. J. Brierley, M. A. Johnson, R. N. Lightowlers, O. F. James, and D. M. Turnbull, “Role of mitochondrial DNA mutations in human aging: implications for the central nervous system and muscle,” Annals of Neurology, vol. 43, no. 2, pp. 217–223, 1998. View at Publisher · View at Google Scholar
  72. V. Pesce, A. Cormio, F. Fracasso et al., “Age-related mitochondrial genotypic and phenotypic alterations in human skeletal muscle,” Free Radical Biology and Medicine, vol. 30, no. 11, pp. 1223–1233, 2001. View at Publisher · View at Google Scholar · View at Scopus
  73. G. Fayet, M. Jansson, D. Sternberg et al., “Ageing muscle: clonal expansions of mitochondrial DNA point mutations and deletions cause focal impairment of mitochondrial function,” Neuromuscular Disorders, vol. 12, no. 5, pp. 484–493, 2002. View at Publisher · View at Google Scholar · View at Scopus
  74. H. C. Lee, C. Y. Pang, H. S. Hsu, and Y. H. Wei, “Ageing-associated tandem duplications in the D-loop of mitochondrial DNA of human muscle,” FEBS Letters, vol. 354, no. 1, pp. 79–83, 1994. View at Google Scholar
  75. O. E. Rooyackers, D. B. Adey, P. A. Ades, and K. S. Nair, “Effect of age on in vivo rates of mitochondrial protein synthesis in human skeletal muscle,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 26, pp. 15364–15369, 1996. View at Publisher · View at Google Scholar · View at Scopus
  76. A. Trifunovic, A. Wredenberg, M. Falkenberg et al., “Premature ageing in mice expressing defective mitochondrial DNA polymerase,” Nature, vol. 429, no. 6990, pp. 417–423, 2004. View at Publisher · View at Google Scholar · View at Scopus
  77. G. C. Kujoth, A. Hiona, T. D. Pugh et al., “Medicine: mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging,” Science, vol. 309, no. 5733, pp. 481–484, 2005. View at Publisher · View at Google Scholar · View at Scopus
  78. A. Hiona, A. Sanz, G. C. Kujoth et al., “Mitochondrial DNA mutations induce mitochondrial dysfunction, apoptosis and sarcopenia in skeletal muscle of mitochondrial DNA mutator mice,” PLoS ONE, vol. 5, no. 7, Article ID e11468, 2010. View at Publisher · View at Google Scholar · View at Scopus
  79. D. Boffoli, S. C. Scacco, R. Vergari, G. Solarino, G. Santacroce, and S. Papa, “Decline with age of the respiratory chain activity in human skeletal muscle,” Biochimica et Biophysica Acta, vol. 1226, no. 1, pp. 73–82, 1994. View at Publisher · View at Google Scholar · View at Scopus
  80. S. Welle, K. Bhatt, and C. A. Thornton, “High-abundance mRNAs in human muscle: comparison between young and old,” Journal of Applied Physiology, vol. 89, no. 1, pp. 297–304, 2000. View at Google Scholar · View at Scopus
  81. S. Welle, A. I. Brooks, J. M. Delehanty et al., “Skeletal muscle gene expression profiles in 20–29 year old and 65–71 year old women,” Experimental Gerontology, vol. 39, no. 3, pp. 369–377, 2004. View at Publisher · View at Google Scholar · View at Scopus
  82. J. M. Zahn, R. Sonu, H. Vogel, E. Crane, K. Mazan-Mamczarz, and R. Rabkin, “Transcriptional profiling of aging in human muscle reveals a common aging signature,” PLoS Genetics, vol. 2, no. 7, p. e115, 2006. View at Publisher · View at Google Scholar
  83. S. Welle, A. I. Brooks, J. M. Delehanty, N. Needler, and C. A. Thornton, “Gene expression profile of aging in human muscle,” Physiol Genomics, vol. 14, no. 2, pp. 149–159, 2003. View at Google Scholar
  84. S. Melov, M. A. Tarnopolsky, K. Beckman, K. Felkey, and A. Hubbard, “Resistance exercise reverses aging in human skeletal muscle,” PLoS ONE, vol. 2, no. 5, p. e465, 2007. View at Publisher · View at Google Scholar
  85. T. Kayo, D. B. Allison, R. Weindruch, and T. A. Prolla, “Influences of aging and caloric restriction on the transcriptional profile of skeletal muscle from rhesus monkeys,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 9, pp. 5093–5098, 2001. View at Publisher · View at Google Scholar · View at Scopus
  86. M. Picard, D. Ritchie, K. J. Wright et al., “Mitochondrial functional impairment with aging is exaggerated in isolated mitochondria compared to permeabilized myofibers,” Aging Cell, vol. 9, no. 6, pp. 1032–1046, 2010. View at Publisher · View at Google Scholar · View at Scopus
  87. J. P. de Magalhaes, J. Curado, and G. M. Church, “Meta-analysis of age-related gene expression profiles identifies common signatures of aging,” Bioinformatics, vol. 25, no. 7, pp. 875–881, 2009. View at Publisher · View at Google Scholar
  88. C. N. Lyons, O. Mathieu-Costello, and C. D. Moyes, “Regulation of skeletal muscle mitochondrial content during aging,” Journals of Gerontology A, vol. 61, no. 1, pp. 3–13, 2006. View at Google Scholar · View at Scopus
  89. P. G. Giresi, E. J. Stevenson, J. Theilhaber et al., “Identification of a molecular signature of sarcopenia,” Physiological Genomics, vol. 21, pp. 253–263, 2005. View at Publisher · View at Google Scholar · View at Scopus
  90. V. K. Mootha, J. Bunkenborg, J. V. Olsen et al., “Integrated analysis of protein composition, tissue diversity, and gene regulation in mouse mitochondria,” Cell, vol. 115, no. 5, pp. 629–640, 2003. View at Publisher · View at Google Scholar · View at Scopus
  91. L. Combaret, D. Dardevet, D. Béchet, D. Taillandier, L. Mosoni, and D. Attaix, “Skeletal muscle proteolysis in aging,” Current Opinion in Clinical Nutrition and Metabolic Care, vol. 12, no. 1, pp. 37–41, 2009. View at Publisher · View at Google Scholar · View at Scopus
  92. B. A. Irving, M. M. Robinson, and K. S. Nair, “Age effect on myocellular remodeling: response to exercise and nutrition in humans,” Ageing Research Reviews, vol. 11, no. 3, pp. 374–389, 2012. View at Publisher · View at Google Scholar
  93. P. Gianni, K. J. Jan, M. J. Douglas, P. M. Stuart, and M. A. Tarnopolsky, “Oxidative stress and the mitochondrial theory of aging in human skeletal muscle,” Experimental Gerontology, vol. 39, no. 9, pp. 1391–400, 2004. View at Publisher · View at Google Scholar · View at Scopus
  94. K. O'Connell and K. Ohlendieck, “Proteomic DIGE analysis of the mitochondria-enriched fraction from aged rat skeletal muscle,” Proteomics, vol. 9, no. 24, pp. 5509–5524, 2009. View at Publisher · View at Google Scholar · View at Scopus
  95. I. Piec, A. Listrat, J. Alliot, C. Chambon, R. G. Taylor, and D. Bechet, “Differential proteome analysis of aging in rat skeletal muscle,” The FASEB Journal, vol. 19, no. 9, pp. 1143–1145, 2005. View at Publisher · View at Google Scholar
  96. S. Ghosh, R. Lertwattanarak, N. Lefort, M. Molina-Carrion, J. Joya-Galeana, and B. P. Bowen, “Reduction in reactive oxygen species production by mitochondria from elderly subjects with normal and impaired glucose tolerance,” Diabetes, vol. 60, no. 8, pp. 2051–2060, 2011. View at Publisher · View at Google Scholar
  97. K. R. Short, J. L. Vittone, M. L. Bigelow et al., “Impact of aerobic exercise training on age-related changes in insulin sensitivity and muscle oxidative capacity,” Diabetes, vol. 52, no. 8, pp. 1888–1896, 2003. View at Publisher · View at Google Scholar · View at Scopus
  98. R. M. P. Alves, R. Vitorino, P. Figueiredo, J. A. Duarte, R. Ferreira, and F. Amado, “Lifelong physical activity modulation of the skeletal muscle mitochondrial proteome in mice,” Journals of Gerontology A, vol. 65, no. 8, pp. 832–842, 2010. View at Publisher · View at Google Scholar · View at Scopus
  99. L. E. Aspnes, C. M. Lee, R. Weindruch, S. S. Chung, E. B. Roecker, and J. M. Aiken, “Caloric restriction reduces fiber loss and mitochondrial abnormalities in aged rat muscle,” The FASEB Journal, vol. 11, no. 7, pp. 573–581, 1997. View at Google Scholar · View at Scopus
  100. S. H. McKiernan, R. J. Colman, E. Aiken et al., “Cellular adaptation contributes to calorie restriction-induced preservation of skeletal muscle in aged rhesus monkeys,” Experimental Gerontology, vol. 47, no. 3, pp. 229–236, 2012. View at Publisher · View at Google Scholar
  101. E. J. Brierley, M. A. Johnson, O. F. James, and D. M. Turnbull, “Effects of physical activity and age on mitochondrial function,” Monthly Journal of the Association of Physicians, vol. 89, no. 4, pp. 251–258, 1996. View at Google Scholar
  102. C. Gelfi, A. Vigano, M. Ripamonti et al., “The human muscle proteome in aging,” Journal of Proteome Research, vol. 5, no. 6, pp. 1344–1353, 2006. View at Publisher · View at Google Scholar
  103. P. Donoghue, L. Staunton, E. Mullen, G. Manning, and K. Ohlendieck, “DIGE analysis of rat skeletal muscle proteins using nonionic detergent phase extraction of young adult versus aged gastrocnemius tissue,” Journal of Proteomics, vol. 73, no. 8, pp. 1441–1453, 2010. View at Publisher · View at Google Scholar · View at Scopus
  104. M. Tonkonogi, M. Fernström, B. Walsh et al., “Reduced oxidative power but unchanged antioxidative capacity in skeletal muscle from aged humans,” Pflugers Archiv European Journal of Physiology, vol. 446, no. 2, pp. 261–269, 2003. View at Google Scholar · View at Scopus
  105. A. R. Coggan, R. J. Spina, D. S. King et al., “Histochemical and enzymatic comparison of the gastrocnemius muscle of young and elderly men and women,” Journals of Gerontology, vol. 47, no. 3, pp. B71–B76, 1992. View at Google Scholar · View at Scopus
  106. G. Lenaz, C. Bovina, C. Castelluccio et al., “Mitochondrial complex I defects in aging,” Molecular and Cellular Biochemistry, vol. 174, no. 1-2, pp. 329–333, 1997. View at Publisher · View at Google Scholar · View at Scopus
  107. S. Kumaran, M. Subathra, M. Balu, and C. Panneerselvam, “Age-associated decreased activities of mitochondrial electron transport chain complexes in heart and skeletal muscle: role of L-carnitine,” Chemico-Biological Interactions, vol. 148, no. 1-2, pp. 11–18, 2004. View at Publisher · View at Google Scholar · View at Scopus
  108. J. Kerner, P. J. Turkaly, P. E. Minkler, and C. L. Hoppel, “Aging skeletal muscle mitochondria in the rat: decreased uncoupling protein-3 content,” American Journal of Physiology, vol. 281, no. 5, pp. E1054–E1062, 2001. View at Google Scholar · View at Scopus
  109. A. Mansouri, F. L. Muller, Y. Liu et al., “Alterations in mitochondrial function, hydrogen peroxide release and oxidative damage in mouse hind-limb skeletal muscle during aging,” Mechanisms of Ageing and Development, vol. 127, no. 3, pp. 298–306, 2006. View at Publisher · View at Google Scholar · View at Scopus
  110. R. T. Hepple, D. J. Baker, M. McConkey, T. Murynka, and R. Norris, “Caloric restriction protects mitochondrial function with aging in skeletal and cardiac muscles,” Rejuvenation Research, vol. 9, no. 2, pp. 219–222, 2006. View at Publisher · View at Google Scholar · View at Scopus
  111. R. T. Hepple, D. J. Baker, J. J. Kaczor, and D. J. Krause, “Long-term caloric restriction abrogates the age-related decline in skeletal muscle aerobic function,” The FASEB Journal, vol. 19, no. 10, pp. 1320–1322, 2005. View at Publisher · View at Google Scholar
  112. D. J. Baker, A. C. Betik, D. J. Krause, and R. T. Hepple, “No decline in skeletal muscle oxidative capacity with aging in long-term calorically restricted rats: effects are independent of mitochondrial DNA integrity,” Journals of Gerontology A, vol. 61, no. 7, pp. 675–684, 2006. View at Google Scholar · View at Scopus
  113. F. Capel, V. Rimbert, D. Lioger et al., “Due to reverse electron transfer, mitochondrial H2O2 release increases with age in human vastus lateralis muscle although oxidative capacity is preserved,” Mechanisms of Ageing and Development, vol. 126, no. 4, pp. 505–511, 2005. View at Publisher · View at Google Scholar · View at Scopus
  114. O. Pastoris, F. Boschi, M. Verri et al., “The effects of aging on enzyme activities and metabolite concentrations in skeletal muscle from sedentary male and female subjects,” Experimental Gerontology, vol. 35, no. 1, pp. 95–104, 2000. View at Publisher · View at Google Scholar · View at Scopus
  115. U. F. Rasmussen, P. Krustrup, M. Kjær, and H. N. Rasmussen, “Experimental evidence against the mitochondrial theory of aging A study of isolated human skeletal muscle mitochondria,” Experimental Gerontology, vol. 38, no. 8, pp. 877–886, 2003. View at Publisher · View at Google Scholar · View at Scopus
  116. L. Larsson, B. Sjodin, and J. Karlsson, “Histochemical and biochemical changes in human skeletal muscle with age in sedentary males, age 22–65 yrs,” Acta Physiologica Scandinavica, vol. 103, no. 1, pp. 31–39, 1978. View at Google Scholar · View at Scopus
  117. U. F. Rasmussen, P. Krustrup, M. Kjaer, and H. N. Rasmussen, “Human skeletal muscle mitochondrial metabolism in youth and senescence: no signs of functional changes in ATP formation and mitochondrial oxidative capacity,” Pflugers Archiv European Journal of Physiology, vol. 446, no. 2, pp. 270–278, 2003. View at Google Scholar · View at Scopus
  118. K. K. McCully, R. A. Fielding, W. J. Evans, J. S. Leigh, and J. D. Posner, “Relationships between in vivo and in vitro measurements of metabolism in young and old human calf muscles,” Journal of Applied Physiology, vol. 75, no. 2, pp. 813–819, 1993. View at Google Scholar · View at Scopus
  119. P. D. Chilibeck, C. R. McCreary, G. D. Marsh et al., “Evaluation of muscle oxidative potential by 31P-MRS during incremental exercise in old and young humans,” European Journal of Applied Physiology and Occupational Physiology, vol. 78, no. 5, pp. 460–465, 1998. View at Google Scholar · View at Scopus
  120. K. K. McCully, M. A. Forciea, L. M. Hack et al., “Muscle metabolism in older subjects using 31P magnetic resonance spectroscopy,” Canadian Journal of Physiology and Pharmacology, vol. 69, no. 5, pp. 576–580, 1991. View at Google Scholar · View at Scopus
  121. J. A. Houmard, M. L. Weidner, K. E. Gavigan, G. L. Tyndall, M. S. Hickey, and A. Alshami, “Fiber type and citrate synthase activity in the human gastrocnemius and vastus lateralis with aging,” Journal of Applied Physiology, vol. 85, no. 4, pp. 1337–1341, 1998. View at Google Scholar · View at Scopus
  122. I. Trounce, E. Byrne, and S. Marzuki, “Decline in skeletal muscle mitochondrial respiratory chain function: possible factor in ageing,” The Lancet, vol. 1, no. 8639, pp. 637–639, 1989. View at Google Scholar · View at Scopus
  123. K. Schunk, M. Pitton, C. Düber, W. Kersjes, S. Schadmand-Fischer, and M. Thelen, “Dynamic phosphorus-31 magnetic resonance spectroscopy of the quadriceps muscle: effects of age and sex on spectroscopic results,” Investigative Radiology, vol. 34, no. 2, pp. 116–125, 1999. View at Publisher · View at Google Scholar · View at Scopus
  124. D. J. Taylor, G. J. Kemp, C. H. Thompson, and G. K. Radda, “Ageing: effects on oxidative function of skeletal muscle in vivo,” Molecular and Cellular Biochemistry, vol. 174, no. 1-2, pp. 1321–1322, 1997. View at Google Scholar
  125. D. J. Marcinek, K. A. Schenkman, W. A. Ciesielski, D. Lee, and K. E. Conley, “Reduced mitochondrial coupling in vivo alters cellular energetics in aged mouse skeletal muscle,” The Journal of Physiology, vol. 569, part 2, pp. 467–473, 2005. View at Publisher · View at Google Scholar
  126. A. Barrientos, J. Casademont, A. Rötig et al., “Absence of relationship between the level of electron transport chain activities and aging in human skeletal muscle,” Biochemical and Biophysical Research Communications, vol. 229, no. 2, pp. 536–539, 1996. View at Publisher · View at Google Scholar · View at Scopus
  127. E. J. Brierly, M. A. Johnson, A. Bowman et al., “Mitochondrial function in muscle from elderly athletes,” Annals of Neurology, vol. 41, no. 1, pp. 114–116, 1997. View at Publisher · View at Google Scholar
  128. R. G. Larsen, D. M. Callahan, S. A. Foulis, and J. A. Kent-Braun, “Age-related changes in oxidative capacity differ between locomotory muscles and are associated with physical activity behavior,” Applied Physiology, Nutrition and Metabolism, vol. 37, no. 1, pp. 88–99, 2012. View at Publisher · View at Google Scholar
  129. D. L. Waters, W. M. Brooks, C. R. Qualls, and R. N. Baumgartner, “Skeletal muscle mitochondrial function and lean body mass in healthy exercising elderly,” Mechanisms of Ageing and Development, vol. 124, no. 3, pp. 301–309, 2003. View at Publisher · View at Google Scholar · View at Scopus
  130. K. F. Petersen, D. Befroy, S. Dufour et al., “Mitochondrial dysfunction in the elderly: possible role in insulin resistance,” Science, vol. 300, no. 5622, pp. 1140–1142, 2003. View at Publisher · View at Google Scholar
  131. D. N. Proctor, W. E. Sinning, J. M. Walro, G. C. Sieck, and P. W. R. Lemon, “Oxidative capacity of human muscle fiber types: effects of age and training status,” Journal of Applied Physiology, vol. 78, no. 6, pp. 2033–2038, 1995. View at Google Scholar · View at Scopus
  132. V. Rimbert, Y. Boirie, M. Bedu, J. F. Hocquette, P. Ritz, and B. Morio, “Muscle fat oxidative capacity is not impaired by age but by physical inactivity: association with insulin sensitivity,” The FASEB Journal, vol. 18, no. 6, pp. 737–739, 2004. View at Google Scholar · View at Scopus
  133. P. A. Figueiredo, S. K. Powers, R. M. Ferreira, F. Amado, H. J. Appell, and J. A. Duarte, “Impact of lifelong sedentary behavior on mitochondrial function of mice skeletal muscle,” The Journals of Gerontology A, vol. 64, no. 9, pp. 927–939, 2009. View at Publisher · View at Google Scholar
  134. J. A. Kent-Braun and A. V. Ng, “Skeletal muscle oxidative capacity in young and older women and men,” Journal of Applied Physiology, vol. 89, no. 3, pp. 1072–1078, 2000. View at Google Scholar
  135. I. R. Lanza, D. E. Befroy, and J. A. Kent-Braun, “Age-related changes in ATP-producing pathways in human skeletal muscle in vivo,” Journal of Applied Physiology, vol. 99, no. 5, pp. 1736–1744, 2005. View at Publisher · View at Google Scholar
  136. I. R. Lanza, R. G. Larsen, and J. A. Kent-Braun, “Effects of old age on human skeletal muscle energetics during fatiguing contractions with and without blood flow,” The Journal of Physiology, vol. 583, part 3, pp. 1093–1105, 2007. View at Publisher · View at Google Scholar
  137. G. Lopez-Lluch, P. M. Irusta, P. Navas, and R. de Cabo, “Mitochondrial biogenesis and healthy aging,” Experimental Gerontology, vol. 43, no. 9, pp. 813–819, 2008. View at Publisher · View at Google Scholar
  138. D. A. Hood, I. Irrcher, V. Ljubicic, and A. M. Joseph, “Coordination of metabolic plasticity in skeletal muscle,” The Journal of Experimental Biology, vol. 209, part 2, pp. 2265–2275, 2006. View at Publisher · View at Google Scholar
  139. S. Jager, C. Handschin, J. St-Pierre, and B. M. Spiegelman, “AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 29, pp. 12017–12022, 2007. View at Publisher · View at Google Scholar
  140. P. Puigserver, J. Rhee, J. Lin et al., “Cytokine stimulation of energy expenditure through p38 MAP kinase activation of PPARgamma coactivator-1,” Molecular Cell, vol. 8, no. 5, pp. 971–982, 2001. View at Google Scholar
  141. D. Knutti, D. Kressler, and A. Kralli, “Regulation of the transcriptional coactivator PGC-1 via MAPK-sensitive interaction with a repressor,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 17, pp. 9713–9718, 2001. View at Publisher · View at Google Scholar · View at Scopus
  142. T. Akimoto, S. C. Pohnert, P. Li et al., “Exercise stimulates Pgc-1alpha transcription in skeletal muscle through activation of the p38 MAPK pathway,” The Journal of Biological Chemistry, vol. 280, no. 20, pp. 19587–19593, 2005. View at Publisher · View at Google Scholar
  143. J. T. Rodgers, C. Lerin, W. Haas, S. P. Gygi, B. M. Spiegelman, and P. Puigserver, “Nutrient control of glucose homeostasis through a complex of PGC-1α and SIRT1,” Nature, vol. 434, no. 7029, pp. 113–118, 2005. View at Publisher · View at Google Scholar · View at Scopus
  144. Z. Gerhart-Hines, J. T. Rodgers, O. Bare et al., “Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1alpha,” The EMBO Journal, vol. 26, no. 7, pp. 1913–1923, 2007. View at Publisher · View at Google Scholar
  145. Z. Wu, X. Huang, Y. Feng et al., “Transducer of regulated CREB-binding proteins (TORCs) induce PGC-1α transcription and mitochondrial biogenesis in muscle cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 39, pp. 14379–14384, 2006. View at Publisher · View at Google Scholar · View at Scopus
  146. P. Puigserver, Z. Wu, C. W. Park, R. Graves, M. Wright, and B. M. Spiegelman, “A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis,” Cell, vol. 92, no. 6, pp. 829–839, 1998. View at Publisher · View at Google Scholar · View at Scopus
  147. P. Puigserver, G. Adelmant, Z. Wu et al., “Activation of PPARγ coactivator-1 through transcription factor docking,” Science, vol. 286, no. 5443, pp. 1368–1371, 1999. View at Publisher · View at Google Scholar · View at Scopus
  148. J. V. Virbasius, C. A. Virbasius, and R. C. Scarpulla, “Identity of GABP with NRF-2, a multisubunit activator of cytochrome oxidase expression, reveals a cellular role for and ETS domain activator of viral promoters,” Genes and Development, vol. 7, no. 3, pp. 380–392, 1993. View at Google Scholar · View at Scopus
  149. C. M. A. Virbasius, J. V. Virbasius, and R. C. Scarpulla, “NRF-1, an activator involved in nuclear-mitochondrial interactions, utilizes a new DNA-binding domain conserved in a family of developmental regulators,” Genes and Development, vol. 7, no. 12 A, pp. 2431–2445, 1993. View at Google Scholar · View at Scopus
  150. R. C. Scarpulla, “Nuclear control of respiratory chain expression by nuclear respiratory factors and PGC-1-related coactivator,” Annals of the New York Academy of Sciences, vol. 1147, pp. 321–334, 2008. View at Publisher · View at Google Scholar
  151. J. V. Virbasius and R. C. Scarpulla, “Activation of the human mitochondrial transcription factor A gene by nuclear respiratory factors: a potential regulatory link between nuclear and mitochondrial gene expression in organelle biogenesis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 91, no. 4, pp. 1309–1313, 1994. View at Google Scholar · View at Scopus
  152. D. A. Hood and A. M. Joseph, “Mitochondrial assembly: protein import,” The Proceedings of the Nutrition Society, vol. 63, no. 2, pp. 293–300, 2004. View at Publisher · View at Google Scholar
  153. F. Diaz and C. T. Moraes, “Mitochondrial biogenesis and turnover,” Cell Calcium, vol. 44, no. 1, pp. 24–35, 2008. View at Publisher · View at Google Scholar
  154. D. A. Hood, P. J. Adhihetty, M. Colavecchia et al., “Mitochondrial biogenesis and the role of the protein import pathway,” Medicine and Science in Sports and Exercise, vol. 35, no. 1, pp. 86–94, 2003. View at Publisher · View at Google Scholar · View at Scopus
  155. W. Neupert and J. M. Herrmann, “Translocation of proteins into mitochondria,” Annual Review of Biochemistry, vol. 76, pp. 723–749, 2007. View at Publisher · View at Google Scholar
  156. N. Gleyzer, K. Vercauteren, and R. C. Scarpulla, “Control of mitochondrial transcription specificity factors (TFB1M and TFB2M) by nuclear respiratory factors (NRF-1 and NRF-2) and PGC-1 family coactivators,” Molecular and Cellular Biology, vol. 25, no. 4, pp. 1354–1366, 2005. View at Publisher · View at Google Scholar · View at Scopus
  157. R. M. Reznick, H. Zong, J. Li et al., “Aging-associated reductions in AMP-activated protein kinase activity and mitochondrial biogenesis,” Cell Metabolism, vol. 5, no. 2, pp. 151–156, 2007. View at Publisher · View at Google Scholar
  158. T. Wenz, S. G. Rossi, R. L. Rotundo, B. M. Spiegelman, and C. T. Moraes, “Increased muscle PGC-1α expression protects from sarcopenia and metabolic disease during aging,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 48, pp. 20405–20410, 2009. View at Publisher · View at Google Scholar · View at Scopus
  159. L. Bevilacqua, J. J. Ramsey, K. Hagopian, R. Weindruch, and M. E. Harper, “Effects of short- and medium-term calorie restriction on muscle mitochondrial proton leak and reactive oxygen species production,” American Journal of Physiology, vol. 286, no. 5, pp. E852–E861, 2004. View at Publisher · View at Google Scholar · View at Scopus
  160. A. M. S. Lezza, V. Pesce, A. Cormio et al., “Increased expression of mitochondrial transcription factor A and nuclear respiratory factor-1 in skeletal muscle from aged human subjects,” FEBS Letters, vol. 501, no. 1–3, pp. 74–78, 2001. View at Google Scholar · View at Scopus
  161. A. E. Frazier, C. Kiu, D. Stojanovski, N. J. Hoogenraad, and M. T. Ryan, “Mitochondrial morphology and distribution in mammalian cells,” Biological Chemistry, vol. 387, no. 12, pp. 1551–1558, 2006. View at Publisher · View at Google Scholar · View at Scopus
  162. G. Benard and M. Karbowski, “Mitochondrial fusion and division: regulation and role in cell viability,” Seminars in Cell & Developmental Biology, vol. 20, no. 3, pp. 365–374, 2009. View at Google Scholar
  163. D. Stojanovski, O. S. Koutsopoulos, K. Okamoto, and M. T. Ryan, “Levels of human Fis1 at the mitochondrial outer membrane regulate mitochondrial morphology,” Journal of Cell Science, vol. 117, part 7, pp. 1201–1210, 2004. View at Publisher · View at Google Scholar · View at Scopus
  164. D. C. Chan, “Mitochondrial fusion and fission in mammals,” Annual Review of Cell and Developmental Biology, vol. 22, pp. 79–99, 2006. View at Publisher · View at Google Scholar
  165. V. Romanello, E. Guadagnin, L. Gomes et al., “Mitochondrial fission and remodelling contributes to muscle atrophy,” The EMBO Journal, vol. 29, no. 10, pp. 1774–1785, 2010. View at Publisher · View at Google Scholar
  166. C. Q. Scheckhuber, R. A. Wanger, C. A. Mignat, and H. D. Osiewacz, “Unopposed mitochondrial fission leads to severe lifespan shortening,” Cell Cycle, vol. 10, no. 18, pp. 3105–3110, 2011. View at Google Scholar
  167. S. Lee, S. Y. Jeong, W. C. Lim et al., “Mitochondrial fission and fusion mediators, hFis1 and OPA1, modulate cellular senescence,” Journal of Biological Chemistry, vol. 282, no. 31, pp. 22977–22983, 2007. View at Publisher · View at Google Scholar · View at Scopus
  168. E. Smirnova, D. L. Shurland, S. N. Ryazantsev, and A. M. van der Bliek, “A human dynamin-related protein controls the distribution of mitochondria,” The Journal of Cell Biology, vol. 143, no. 2, pp. 351–358, 1998. View at Google Scholar
  169. T. Ono, K. Isobe, K. Nakada, and J. I. Hayashi, “Human cells are protected from mitochondrial dysfunction by complementation of DNA products in fused mitochondria,” Nature Genetics, vol. 28, no. 3, pp. 272–275, 2001. View at Publisher · View at Google Scholar · View at Scopus
  170. A. Sato, K. Nakada, and J. I. Hayashi, “Mitochondrial dynamics and aging: mitochondrial interaction preventing individuals from expression of respiratory deficiency caused by mutant mtDNA,” Biochimica et Biophysica Acta, vol. 1763, no. 5-6, pp. 473–481, 2006. View at Publisher · View at Google Scholar · View at Scopus
  171. A. Kowald and T. B. Kirkwood, “Evolution of the mitochondrial fusion-fission cycle and its role in aging,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 25, pp. 10237–10242, 2011. View at Publisher · View at Google Scholar
  172. S. P. Kirkwood, E. A. Munn, and G. A. Brooks, “Mitochondrial reticulum in limb skeletal muscle,” The American Journal of Physiology, vol. 3, part 1, pp. C395–C402, 1986. View at Google Scholar
  173. H. Chen, A. Chomyn, and D. C. Chan, “Disruption of fusion results in mitochondrial heterogeneity and dysfunction,” The Journal of Biological Chemistry, vol. 280, no. 28, pp. 26185–26192, 2005. View at Publisher · View at Google Scholar
  174. D. Bach, S. Pich, F. X. Soriano et al., “Mitofusin-2 determines mitochondrial network architecture and mitochondrial metabolism: a novel regulatory mechanism altered in obesity,” Journal of Biological Chemistry, vol. 278, no. 19, pp. 17190–17197, 2003. View at Publisher · View at Google Scholar
  175. S. Cipolat, T. Rudka, D. Hartmann et al., “Mitochondrial rhomboid PARL regulates cytochrome c release during apoptosis via OPA1-dependent cristae remodeling,” Cell, vol. 126, no. 1, pp. 163–175, 2006. View at Publisher · View at Google Scholar · View at Scopus
  176. S. Duvezin-Caubet, R. Jagasia, J. Wagener et al., “Proteolytic processing of OPA1 links mitochondrial dysfunction to alterations in mitochondrial morphology,” Journal of Biological Chemistry, vol. 281, no. 49, pp. 37972–37979, 2006. View at Publisher · View at Google Scholar · View at Scopus
  177. H. Chen, M. Vermulst, Y. E. Wang et al., “Mitochondrial fusion is required for mtdna stability in skeletal muscle and tolerance of mtDNA mutations,” Cell, vol. 141, no. 2, pp. 280–289, 2010. View at Publisher · View at Google Scholar · View at Scopus
  178. R. Lodi, C. Tonon, M. L. Valentino et al., “Deficit of in vivo mitochondrial ATP production in OPA1-related dominant optic atrophy,” Annals of Neurology, vol. 56, no. 5, pp. 719–723, 2004. View at Publisher · View at Google Scholar
  179. I. Kim, S. Rodriguez-Enriquez, and J. J. Lemasters, “Selective degradation of mitochondria by mitophagy,” Archives of Biochemistry and Biophysics, vol. 462, no. 2, pp. 245–253, 2007. View at Publisher · View at Google Scholar
  180. K. Wang and D. J. Klionsky, “Mitochondria removal by autophagy,” Autophagy, vol. 7, no. 3, pp. 297–300, 2011. View at Publisher · View at Google Scholar · View at Scopus
  181. K. Okamoto, N. Kondo-Okamoto, and Y. Ohsumi, “Mitochondria-anchored receptor Atg32 mediates degradation of mitochondria via selective autophagy,” Developmental Cell, vol. 17, no. 1, pp. 87–97, 2009. View at Publisher · View at Google Scholar · View at Scopus
  182. T. Kanki, “Nix, a receptor protein for mitophagy in mammals,” Autophagy, vol. 6, no. 3, pp. 433–435, 2010. View at Publisher · View at Google Scholar · View at Scopus
  183. Y. Gu, C. Wang, and A. Cohen, “Effect of IGF-1 on the balance between autophagy of dysfunctional mitochondria and apoptosis,” FEBS Letters, vol. 577, no. 3, pp. 357–360, 2004. View at Publisher · View at Google Scholar
  184. Y. Zhang, H. Qi, R. Taylor, W. Xu, L. F. Liu, and S. Jin, “The role of autophagy in mitochondria maintenance: characterization of mitochondrial functions in autophagy-deficient S. cerevisiae strains,” Autophagy, vol. 3, no. 4, pp. 337–346, 2007. View at Google Scholar · View at Scopus
  185. G. Cavallini, A. Donati, M. Taddei, and E. Bergamini, “Evidence for selective mitochondrial autophagy and failure in aging,” Autophagy, vol. 3, no. 1, pp. 26–27, 2007. View at Google Scholar · View at Scopus
  186. A. M. Cuervo, E. Bergamini, U. T. Brunk, W. Dröge, M. Ffrench, and A. Terman, “Autophagy and aging: the importance of maintaining “clean” cells,” Autophagy, vol. 1, no. 3, pp. 131–140, 2005. View at Google Scholar · View at Scopus
  187. S. E. Wohlgemuth, A. Y. Seo, E. Marzetti, H. A. Lees, and C. Leeuwenburgh, “Skeletal muscle autophagy and apoptosis during aging: effects of calorie restriction and life-long exercise,” Experimental Gerontology, vol. 45, no. 2, pp. 138–148, 2010. View at Publisher · View at Google Scholar
  188. E. Masiero and M. Sandri, “Autophagy inhibition induces atrophy and myopathy in adult skeletal muscles,” Autophagy, vol. 6, no. 2, pp. 307–309, 2010. View at Publisher · View at Google Scholar · View at Scopus
  189. J. J. Wu, C. Quijano, E. Chen et al., “Mitochondrial dysfunction and oxidative stress mediate the physiological impairment induced by the disruption of autophagy,” Aging, vol. 1, no. 4, pp. 425–437, 2009. View at Google Scholar
  190. T. Vellai, K. Takacs-Vellai, M. Sass, and D. J. Klionsky, “The regulation of aging: does autophagy underlie longevity?” Trends in Cell Biology, vol. 19, no. 10, pp. 487–494, 2009. View at Publisher · View at Google Scholar
  191. E. B. Taylor and J. Rutter, “Mitochondrial quality control by the ubiquitin-proteasome system,” Biochemical Society Transactions, vol. 39, no. 5, pp. 1509–1513, 2011. View at Publisher · View at Google Scholar
  192. P. Low, “The role of ubiquitin-proteasome system in ageing,” General and Comparative Endocrinology, vol. 172, no. 1, pp. 39–43, 2011. View at Publisher · View at Google Scholar
  193. M. Altun, H. C. Besche, H. S. Overkleeft et al., “Muscle wasting in aged, sarcopenic rats is associated with enhanced activity of the ubiquitin proteasome pathway,” Journal of Biological Chemistry, vol. 285, no. 51, pp. 39597–39608, 2010. View at Publisher · View at Google Scholar · View at Scopus
  194. S. A. Whitman, M. J. Wacker, S. R. Richmond, and M. P. Godard, “Contributions of the ubiquitin-proteasome pathway and apoptosis to human skeletal muscle wasting with age,” Pflugers Archiv European Journal of Physiology, vol. 450, no. 6, pp. 437–446, 2005. View at Publisher · View at Google Scholar · View at Scopus
  195. V. J. Dalbo, M. D. Roberts, S. E. Hassell, R. D. Brown, and C. M. Kerksick, “Effects of age on serum hormone concentrations and intramuscular proteolytic signaling before and after a single bout of resistance training,” The Journal of Strength & Conditioning Research, vol. 25, no. 1, pp. 1–9, 2011. View at Publisher · View at Google Scholar
  196. C. K. Lee, R. G. Klopp, R. Weindruch, and T. A. Prolla, “Gene expression profile of aging and its retardation by caloric restriction,” Science, vol. 285, no. 5432, pp. 1390–1393, 1999. View at Publisher · View at Google Scholar · View at Scopus
  197. K. H. Strucksberg, K. Tangavelou, R. Schröder, and C. S. Clemen, “Proteasomal activity in skeletal muscle: a matter of assay design, muscle type, and age,” Analytical Biochemistry, vol. 399, no. 2, pp. 225–229, 2010. View at Publisher · View at Google Scholar · View at Scopus
  198. D. Cai, K. K. Lee, M. Li, M. K. Tang, and K. M. Chan, “Ubiquitin expression is up-regulated in human and rat skeletal muscles during aging,” Archives of Biochemistry and Biophysics, vol. 425, no. 1, pp. 42–50, 2004. View at Publisher · View at Google Scholar
  199. D. R. Green and J. C. Reed, “Mitochondria and apoptosis,” Science, vol. 281, no. 5381, pp. 1309–1312, 1998. View at Google Scholar
  200. S. Y. Jeong and D. W. Seol, “The role of mitochondria in apoptosis,” BMB Reports, vol. 41, no. 1, pp. 11–22, 2008. View at Google Scholar
  201. E. Marzetti, J. C. Hwang, H. A. Lees et al., “Mitochondrial death effectors: relevance to sarcopenia and disuse muscle atrophy,” Biochimica et Biophysica, vol. 1800, no. 3, pp. 235–244, 2010. View at Publisher · View at Google Scholar
  202. D. F. Suen, K. L. Norris, and R. J. Youle, “Mitochondrial dynamics and apoptosis,” Genes & Development, vol. 22, no. 12, pp. 1577–1590, 2008. View at Publisher · View at Google Scholar
  203. A. J. Dirks and C. Leeuwenburgh, “The role of apoptosis in age-related skeletal muscle atrophy,” Sports Medicine, vol. 35, no. 6, pp. 473–483, 2005. View at Publisher · View at Google Scholar · View at Scopus
  204. E. Marzetti and C. Leeuwenburgh, “Skeletal muscle apoptosis, sarcopenia and frailty at old age,” Experimental Gerontology, vol. 41, no. 12, pp. 1234–1238, 2006. View at Publisher · View at Google Scholar · View at Scopus
  205. L. T. Malmgren, C. E. Jones, and L. M. Bookman, “Muscle fiber and satellite cell apoptosis in the aging human thyroarytenoid muscle: a stereological study with confocal laser scanning microscopy,” Otolaryngology, vol. 125, no. 1, pp. 34–39, 2001. View at Publisher · View at Google Scholar · View at Scopus
  206. T. Koseki, N. Inohara, S. Chen, and G. Nunez, “ARC, an inhibitor of apoptosis expressed in skeletal muscle and heart that interacts selectively with caspases,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 9, pp. 5156–5160, 1998. View at Google Scholar
  207. S. Y. Park, H. Y. Kim, J. H. Lee, K. H. Yoon, M. S. Chang, and S. K. Park, “The age-dependent induction of apoptosis-inducing factor (AIF) in the human semitendinosus skeletal muscle,” Cellular and Molecular Biology Letters, vol. 15, no. 1, pp. 1–12, 2010. View at Publisher · View at Google Scholar
  208. J. Tamilselvan, G. Jayaraman, K. Sivarajan, and C. Panneerselvam, “Age-dependent upregulation of p53 and cytochrome c release and susceptibility to apoptosis in skeletal muscle fiber of aged rats: role of carnitine and lipoic acid,” Free Radical Biology and Medicine, vol. 43, no. 12, pp. 1656–1669, 2007. View at Publisher · View at Google Scholar · View at Scopus
  209. A. Y. Seo, J. Xu, S. Servais et al., “Mitochondrial iron accumulation with age and functional consequences,” Aging Cell, vol. 7, no. 5, pp. 706–716, 2008. View at Publisher · View at Google Scholar · View at Scopus
  210. A. Dirks and C. Leeuwenburgh, “Apoptosis in skeletal muscle with aging,” American Journal of Physiology Regulatory, vol. 282, no. 2, pp. 519–527, 2002. View at Publisher · View at Google Scholar
  211. E. Marzetti, S. E. Wohlgemuth, H. A. Lees, H. Y. Chung, S. Giovannini, and C. Leeuwenburgh, “Age-related activation of mitochondrial caspase-independent apoptotic signaling in rat gastrocnemius muscle,” Mechanisms of Ageing and Development, vol. 129, no. 9, pp. 542–549, 2008. View at Publisher · View at Google Scholar · View at Scopus
  212. C. Leeuwenburgh, C. M. Gurley, B. A. Strotman, and E. E. Dupont-Versteegden, “Age-related differences in apoptosis with disuse atrophy in soleus muscle,” American Journal of Physiology, vol. 288, no. 5, pp. R1288–R1296, 2005. View at Publisher · View at Google Scholar · View at Scopus
  213. P. M. Siu, E. E. Pistilli, and S. E. Alway, “Apoptotic responses to hindlimb suspension in gastrocnemius muscles from young adult and aged rats,” American Journal of Physiology, vol. 289, no. 4, pp. R1015–R1026, 2005. View at Publisher · View at Google Scholar · View at Scopus
  214. K. M. Rice and E. R. Blough, “Sarcopenia-related apoptosis is regulated differently in fast- and slow-twitch muscles of the aging F344/N × BN rat model,” Mechanisms of Ageing and Development, vol. 127, no. 8, pp. 670–679, 2006. View at Publisher · View at Google Scholar · View at Scopus
  215. E. M. McMillan and J. Quadrilatero, “Differential apoptosis-related protein expression, mitochondrial properties, proteolytic enzyme activity, and DNA fragmentation between skeletal muscles,” American Journal of Physiology, vol. 300, no. 3, pp. R531–R543, 2011. View at Publisher · View at Google Scholar · View at Scopus
  216. P. J. Adhihetty, V. Ljubicic, K. J. Menzies, and D. A. Hood, “Differential susceptibility of subsarcolemmal and intermyofibrillar mitochondria to apoptotic stimuli,” American Journal of Physiology, vol. 289, no. 4, pp. C994–C1001, 2005. View at Publisher · View at Google Scholar · View at Scopus
  217. J. O. Holloszy, “Biochemical adaptations in muscle. Effects of exercise on mitochondrial oxygen uptake and respiratory enzyme activity in skeletal muscle,” Journal of Biological Chemistry, vol. 242, no. 9, pp. 2278–2282, 1967. View at Google Scholar · View at Scopus
  218. J. O. Holloszy, “Adaptations of muscular tissue to training,” Progress in Cardiovascular Diseases, vol. 18, no. 6, pp. 445–458, 1976. View at Google Scholar
  219. D. L. Johannsen, J. P. DeLany, M. I. Frisard et al., “Physical activity in aging: comparison among young, aged, and nonagenarian individuals,” Journal of Applied Physiology, vol. 105, no. 2, pp. 495–501, 2008. View at Publisher · View at Google Scholar
  220. A. R. Coggan, R. J. Spina, D. S. King et al., “Histochemical and enzymatic comparison of the gastrocnemius muscle of young and elderly men and women,” Journals of Gerontology, vol. 47, no. 3, pp. B71–B76, 1992. View at Google Scholar · View at Scopus
  221. J. M. Cooper, V. M. Mann, and A. H. Schapira, “Analyses of mitochondrial respiratory chain function and mitochondrial DNA deletion in human skeletal muscle: effect of ageing,” Journal of the Neurological Sciences, vol. 113, no. 1, pp. 91–98, 1992. View at Google Scholar
  222. K. R. Short, M. L. Bigelow, J. Kahl et al., “Decline in skeletal muscle mitochondrial function with aging in humans,” Proceedings of the National Academy of Sciences, vol. 102, no. 15, pp. 5618–5623, 2005. View at Publisher · View at Google Scholar
  223. S. A. Jubrias, P. C. Esselman, L. B. Price, M. E. Cress, and K. E. Conley, “Large energetic adaptations of elderly muscle to resistance and endurance training,” Journal of Applied Physiology, vol. 90, no. 5, pp. 1663–1670, 2001. View at Google Scholar · View at Scopus
  224. E. V. Menshikova, V. B. Ritov, L. Fairfull, R. E. Ferrell, D. E. Kelley, and B. H. Goodpaster, “Effects of exercise on mitochondrial content and function in aging human skeletal muscle,” The Journals of Gerontology A, vol. 61, no. 6, pp. 534–540, 2006. View at Google Scholar
  225. K. R. Short, “Mitochondrial ATP measurements,” American Journal of Physiology Regulatory, vol. 287, no. 1, pp. R243–R245, 2004. View at Publisher · View at Google Scholar
  226. W. Song, H. B. Kwak, and J. M. Lawler, “Exercise training attenuates age-induced changes in apoptotic signaling in rat skeletal muscle,” Antioxidants and Redox Signaling, vol. 8, no. 3-4, pp. 517–528, 2006. View at Publisher · View at Google Scholar · View at Scopus
  227. K. R. Short, J. L. Vittone, M. L. Bigelow, D. N. Proctor, and K. S. Nair, “Age and aerobic exercise training effects on whole body and muscle protein metabolism,” American Journal of Physiology, vol. 286, no. 1, pp. 92–101, 2004. View at Publisher · View at Google Scholar
  228. C. Leeuwenburgh, R. Fiebig, R. Chandwaney, and Ji Li Li, “Aging and exercise training in skeletal muscle: responses of glutathione and antioxidant enzyme systems,” American Journal of Physiology, vol. 267, no. 2, part 2, pp. R439–R445, 1994. View at Google Scholar · View at Scopus
  229. G. Parise, A. N. Brose, and M. A. Tarnopolsky, “Resistance exercise training decreases oxidative damage to DNA and increases cytochrome oxidase activity in older adults,” Experimental Gerontology, vol. 40, no. 3, pp. 173–180, 2005. View at Publisher · View at Google Scholar
  230. G. Parise, S. M. Phillips, J. J. Kaczor, and M. A. Tarnopolsky, “Antioxidant enzyme activity is up-regulated after unilateral resistance exercise training in older adults,” Free Radical Biology and Medicine, vol. 39, no. 2, pp. 289–295, 2005. View at Publisher · View at Google Scholar
  231. R. J. Colman, R. M. Anderson, S. C. Johnson et al., “Caloric restriction delays disease onset and mortality in rhesus monkeys,” Science, vol. 325, no. 5937, pp. 201–204, 2009. View at Publisher · View at Google Scholar
  232. J. R. Speakman and S. E. Mitchell, “Caloric restriction,” Molecular Aspects of Medicine, vol. 32, no. 3, pp. 159–221, 2011. View at Publisher · View at Google Scholar
  233. B. J. Merry, “Oxidative stress and mitochondrial function with aging—the effects of calorie restriction,” Aging Cell, vol. 3, no. 1, pp. 7–12, 2004. View at Publisher · View at Google Scholar · View at Scopus
  234. T. A. Zainal, T. D. Oberley, D. B. Allison, L. I. Szweda, and R. Weindruch, “Caloric restriction of rhesus monkeys lowers oxidative damage in skeletal muscle,” The FASEB Journal, vol. 14, no. 12, pp. 1825–1836, 2000. View at Google Scholar · View at Scopus
  235. B. Drew, P. A. Dirks, C. Selman et al., “Effects of aging and caloric restriction on mitochondrial energy production in gastrocnemius muscle and heart,” American Journal of Physiology, vol. 284, no. 2, pp. R474–R480, 2003. View at Google Scholar · View at Scopus
  236. A. Lass, B. H. Sohal, R. Weindruch, M. J. Forster, and R. S. Sohal, “Caloric restriction prevents age-associated accrual of oxidative damage to mouse skeletal muscle mitochondria,” Free Radical Biology and Medicine, vol. 25, no. 9, pp. 1089–1097, 1998. View at Publisher · View at Google Scholar · View at Scopus
  237. L. Bevilacqua, J. J. Ramsey, K. Hagopian, R. Weindruch, and M. E. Harper, “Long-term caloric restriction increases UCP3 content but decreases proton leak and reactive oxygen species production in rat skeletal muscle mitochondria,” American Journal of Physiology, vol. 289, no. 3, pp. E429–E438, 2005. View at Publisher · View at Google Scholar · View at Scopus
  238. M. L. Hamilton, H. Van Remmen, J. A. Drake et al., “Does oxidative damage to DNA increase with age?” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 18, pp. 10469–10474, 2001. View at Publisher · View at Google Scholar
  239. F. Usuki, A. Yasutake, F. Umehara, and I. Higuchi, “Beneficial effects of mild lifelong dietary restriction on skeletal muscle: prevention of age-related mitochondrial damage, morphological changes, and vulnerability to a chemical toxin,” Acta Neuropathologica, vol. 108, no. 1, pp. 1–9, 2004. View at Publisher · View at Google Scholar · View at Scopus
  240. C. M. Lee, L. E. Aspnes, S. S. Chung, R. Weindruch, and J. M. Aiken, “Influences of caloric restriction on age-associated skeletal muscle fiber characteristics and mitochondrial changes in rats and mice,” Annals of the New York Academy of Sciences, vol. 854, pp. 182–191, 1998. View at Publisher · View at Google Scholar · View at Scopus
  241. A. E. Civitarese, S. Carling, L. K. Heilbronn et al., “Calorie restriction increases muscle mitochondrial biogenesis in healthy humans,” PLoS Medicine, vol. 4, no. 3, p. e76, 2007. View at Publisher · View at Google Scholar
  242. R. Sreekumar, J. Unnikrishnan, A. Fu et al., “Effects of caloric restriction on mitochondrial function and gene transcripts in rat muscle,” American Journal of Physiology, vol. 283, no. 1, pp. E38–E43, 2002. View at Google Scholar · View at Scopus
  243. G. Lopez-Lluch, N. Hunt, B. Jones et al., “Calorie restriction induces mitochondrial biogenesis and bioenergetic efficiency,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 6, pp. 1768–1773, 2006. View at Publisher · View at Google Scholar
  244. S. B. Lal, J. J. Ramsey, S. Monemdjou, R. Weindruch, and M. E. Harper, “Effects of caloric restriction on skeletal muscle mitochondrial proton leak in aging rats,” Journals of Gerontology A, vol. 56, no. 3, pp. B116–B122, 2001. View at Google Scholar · View at Scopus
  245. C. R. Hancock, D. H. Han, K. Higashida, S. H. Kim, and J. O. Holloszy, “Does calorie restriction induce mitochondrial biogenesis? A reevaluation,” The FASEB Journal, vol. 25, no. 2, pp. 785–791, 2011. View at Publisher · View at Google Scholar
  246. V. G. Desai, R. Weindruch, R. W. Hart, and R. J. Feuers, “Influences of age and dietary restriction on gastrocnemius electron transport system activities in mice,” Archives of Biochemistry and Biophysics, vol. 333, no. 1, pp. 145–151, 1996. View at Publisher · View at Google Scholar
  247. E. Bua, S. H. McKiernan, and J. M. Aiken, “Calorie restriction limits the generation but not the progression of mitochondrial abnormalities in aging skeletal muscle,” The FASEB Journal Biology, vol. 18, no. 3, pp. 582–584, 2004. View at Google Scholar · View at Scopus
  248. S. H. McKiernan, R. J. Colman, M. Lopez et al., “Caloric restriction delays aging-induced cellular phenotypes in rhesus monkey skeletal muscle,” Experimental Gerontology, vol. 46, no. 1, pp. 23–29, 2011. View at Publisher · View at Google Scholar
  249. A. A. Gonzalez, R. Kumar, J. D. Mulligan, A. J. Davis, R. Weindruch, and K. W. Saupe, “Metabolic adaptations to fasting and chronic caloric restriction in heart, muscle, and liver do not include changes in AMPK activity,” American Journal of Physiology, vol. 287, no. 5, pp. E1032–E1037, 2004. View at Publisher · View at Google Scholar · View at Scopus
  250. K. Shinmura, K. Tamaki, and R. Bolli, “Short-term caloric restriction improves ischemic tolerance independent of opening of ATP-sensitive K+ channels in both young and aged hearts,” Journal of Molecular and Cellular Cardiology, vol. 39, no. 2, pp. 285–296, 2005. View at Publisher · View at Google Scholar · View at Scopus
  251. Z. Q. Wang, Z. E. Floyd, J. Qin et al., “Modulation of skeletal muscle insulin signaling with chronic caloric restriction in cynomolgus monkeys,” Diabetes, vol. 58, no. 7, pp. 1488–1498, 2009. View at Publisher · View at Google Scholar
  252. A. J. Dirks and C. Leeuwenburgh, “Aging and lifelong calorie restriction result in adaptations of skeletal muscle apoptosis repressor, apoptosis-inducing factor, X-linked inhibitor of apoptosis, caspase-3, and caspase-12,” Free Radical Biology and Medicine, vol. 36, no. 1, pp. 27–39, 2004. View at Publisher · View at Google Scholar · View at Scopus
  253. E. Marzetti, J. M. Lawler, A. Hiona, T. Manini, A. Y. Seo, and C. Leeuwenburgh, “Modulation of age-induced apoptotic signaling and cellular remodeling by exercise and calorie restriction in skeletal muscle,” Free Radical Biology and Medicine, vol. 44, no. 2, pp. 160–168, 2008. View at Publisher · View at Google Scholar · View at Scopus
  254. T. Phillips and C. Leeuwenburgh, “Muscle fiber specific apoptosis and TNF-alpha signaling in sarcopenia are attenuated by life-long calorie restriction,” The FASEB Journal, vol. 19, no. 6, pp. 668–670, 2005. View at Publisher · View at Google Scholar
  255. H. Y. Lee, C. S. Choi, A. L. Birkenfeld et al., “Targeted expression of catalase to mitochondria prevents age-associated reductions in mitochondrial function and insulin resistance,” Cell Metabolism, vol. 12, no. 6, pp. 668–674, 2010. View at Publisher · View at Google Scholar
  256. E. Marzetti, H. A. Lees, S. E. Wohlgemuth, and C. Leeuwenburgh, “Sarcopenia of aging: underlying cellular mechanisms and protection by calorie restriction,” BioFactors, vol. 35, no. 1, pp. 28–35, 2009. View at Publisher · View at Google Scholar · View at Scopus
  257. A. M. Payne, S. L. Dodd, and C. Leeuwenburgh, “Life-long calorie restriction in Fischer 344 rats attenuates age-related loss in skeletal muscle-specific force and reduces extracellular space,” Journal of Applied Physiology, vol. 95, no. 6, pp. 2554–2562, 2003. View at Google Scholar · View at Scopus
  258. S. H. McKiernan, E. Bua, J. McGorray, and J. Aiken, “Early-onset calorie restriction conserves fiber number in aging rat skeletal muscle,” The FASEB Journal, vol. 18, no. 3, pp. 580–581, 2004. View at Google Scholar · View at Scopus
  259. M. Lagouge, C. Argmann, Z. Gerhart-Hines et al., “Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1α,” Cell, vol. 127, no. 6, pp. 1109–1122, 2006. View at Publisher · View at Google Scholar · View at Scopus
  260. J. H. Um, S. J. Park, H. Kang et al., “AMP-activated protein kinase-deficient mice are resistant to the metabolic effects of resveratrol,” Diabetes, vol. 59, no. 3, pp. 554–563, 2010. View at Publisher · View at Google Scholar
  261. J. A. Baur, K. J. Pearson, N. L. Price et al., “Resveratrol improves health and survival of mice on a high-calorie diet,” Nature, vol. 444, no. 7117, pp. 337–342, 2006. View at Publisher · View at Google Scholar
  262. S. Timmers, E. Konings, L. Bilet et al., “Calorie restriction-like effects of 30 days of resveratrol supplementation on energy metabolism and metabolic profile in obese humans,” Cell Metabolism, vol. 14, no. 5, pp. 612–622, 2011. View at Publisher · View at Google Scholar
  263. M. Pacholec, J. E. Bleasdale, B. Chrunyk et al., “SRT1720, SRT2183, SRT1460, and resveratrol are not direct activators of SIRT1,” The Journal of Biological Chemistry, vol. 285, no. 11, pp. 8340–8351, 2010. View at Publisher · View at Google Scholar · View at Scopus
  264. J. L. Barger, T. Kayo, J. M. Vann et al., “A low dose of dietary resveratrol partially mimics caloric restriction and retards aging parameters in mice,” PLoS ONE, vol. 3, no. 6, p. e2264, 2008. View at Publisher · View at Google Scholar
  265. Z. Ungvari, W. E. Sonntag, R. de Cabo, J. A. Baur, and A. Csiszar, “Mitochondrial protection by resveratrol,” Exercise and Sport Sciences Reviews, vol. 39, no. 3, pp. 128–132, 2011. View at Publisher · View at Google Scholar
  266. T. Murase, S. Haramizu, N. Ota, and T. Hase, “Suppression of the aging-associated decline in physical performance by a combination of resveratrol intake and habitual exercise in senescence-accelerated mice,” Biogerontology, vol. 10, no. 4, pp. 423–434, 2009. View at Publisher · View at Google Scholar · View at Scopus
  267. J. R. Jackson, M. J. Ryan, Y. Hao, and S. E. Alway, “Mediation of endogenous antioxidant enzymes and apoptotic signaling by resveratrol following muscle disuse in the gastrocnemius muscles of young and old rats,” American Journal of Physiology, vol. 299, no. 6, pp. R1572–R1581, 2010. View at Publisher · View at Google Scholar · View at Scopus
  268. J. R. Jackson, M. J. Ryan, and S. E. Alway, “Long-term supplementation with resveratrol alleviates oxidative stress but does not attenuate sarcopenia in aged mice,” The Journals of Gerontology A, vol. 66, no. 7, pp. 751–764, 2011. View at Publisher · View at Google Scholar