Table of Contents Author Guidelines Submit a Manuscript
Journal of Aging Research
Volume 2012, Article ID 679345, 7 pages
http://dx.doi.org/10.1155/2012/679345
Research Article

Gender Differences in Age-Related Changes in Cardiac Autonomic Nervous Function

1Department of Physiology, K.S Hedge Medical Academy, Nitte University, Mangalore 575018, India
2Department of Physiology, St. John's Medical College, Bangalore 560034, India

Received 15 July 2011; Revised 20 October 2011; Accepted 23 October 2011

Academic Editor: Antony Bayer

Copyright © 2012 Shailaja Moodithaya and Sandhya T. Avadhany. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. N. Levy, “Autonomic interactions in cardiac control,” Annals of the New York Academy of Sciences, vol. 601, pp. 209–221, 1990. View at Publisher · View at Google Scholar · View at Scopus
  2. R. E. Kleiger, J. P. Miller, and J. T. Bigger, “Decreased heart rate variability and its association with increased mortality after acute myocardial infarction,” American Journal of Cardiology, vol. 59, no. 4, pp. 256–262, 1987. View at Google Scholar · View at Scopus
  3. Task force of European Society of Cardiology and North American Society of Pacing and Electrophysiology, “Heart rate variability: standards of measurement, physiological interpretation, and clinical use,” Circulation, vol. 93, no. 5, pp. 1043–1065, 1996. View at Google Scholar
  4. B. Pomeranz, R. J. Macaulay, M. A. Caudill et al., “Assessment of autonomic function in humans by heart rate spectral analysis,” American Journal of Physiology, vol. 248, no. 1, pp. H151–153, 1985. View at Google Scholar · View at Scopus
  5. C. Shibao, C. G. Grijalva, S. R. Raj, I. Biaggioni, and M. R. Griffin, “Orthostatic hypotension-related hospitalizations in the United States,” American Journal of Medicine, vol. 120, no. 11, pp. 975–980, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  6. I. A. O'Brien, P. O'Hare, and R. J. M. Corrall, “Heart rate variability in healthy subjects: effect of age and the derivation of normal ranges for tests of autonomic function,” British Heart Journal, vol. 55, no. 4, pp. 348–354, 1986. View at Google Scholar · View at Scopus
  7. J. T. Bigger, J. L. Fleiss, R. C. Steinman, L. M. Rolnitzky, W. J. Schneider, and P. K. Stein, “RR variability in healthy, middle-aged persons compared with patients with chronic coronary heart disease or recent acute myocardial infarction,” Circulation, vol. 91, no. 7, pp. 1936–1943, 1995. View at Google Scholar · View at Scopus
  8. J. Hayano, Y. Sakakibara, A. Yamada et al., “Accuracy of assessment of cardiac vagal tone by heart rate variability in normal subjects,” American Journal of Cardiology, vol. 67, no. 2, pp. 199–204, 1991. View at Publisher · View at Google Scholar · View at Scopus
  9. D. A. Gelber, M. Pfeifer, B. Dawson, and M. Schumer, “Cardiovascular autonomic nervous system tests: determination of normative values and effect of confounding variables,” Journal of the Autonomic Nervous System, vol. 62, no. 1-2, pp. 40–44, 1997. View at Publisher · View at Google Scholar · View at Scopus
  10. T. B. J. Kuo, T. Lin, C. C. H. Yang, C. L. Li, C. F. Chen, and P. Chou, “Effect of aging on gender differences in neural control of heart rate,” American Journal of Physiology, vol. 277, no. 6, pp. H2233–H2239, 1999. View at Google Scholar · View at Scopus
  11. T. Yukishita, K. Lee, S. Kim et al., “Age and sex dependent altertations in heart rate variability; profiling the characteristics of men and women in their 30s,” Journal of Anti-Aging Medicine, vol. 7, no. 8, pp. 94–99, 2010. View at Google Scholar
  12. A. V. Bharathi and M. Vaz, “The construct of a simple clinic questionnaire to assess physical activity and its relative validity,” Indian Heart Journal, vol. 52, no. 5, pp. 601–603, 2000. View at Google Scholar · View at Scopus
  13. “Energy and protein requirements. Report of a joint FAO/WHO/UNU Expert Consultation,” World Health Organization Technical Report Series, vol. 724, pp. 1–206, 1985.
  14. J. B. Young and I. A. MacDonald, “Sympathoadrenal activity in human obesity: heterogeneity of findings since 1980,” International Journal of Obesity, vol. 16, no. 12, pp. 959–967, 1992. View at Google Scholar · View at Scopus
  15. WHO consultation on obesity in report of WHO consultation on Obesity, WHO, Geneva, Switzerland, 1997.
  16. K. P. Davy, N. L. Miniclier, J. A. Tylor, E. T. Stevenson, and D. R. Seals, “Elevated heart rate variability in physically active postmenopausal women: a cardio protective effect?” American Journal of Physiology, vol. 271, pp. H455–H460, 1996. View at Google Scholar
  17. S. M. Ryan, A. L. Goldberger, S. M. Pincus, J. Mietus, and L. A. Lipsitz, “Gender- and age-related differences in heart rate dynamics: are women more complex than men?” Journal of the American College of Cardiology, vol. 24, no. 7, pp. 1700–1707, 1994. View at Google Scholar
  18. J. P. Saul, R. F. Rea, D. L. Eckberg, R. D. Berger, and R. J. Cohen, “Heart rate and muscle sympathetic nerve variability during reflex changes of autonomic activity,” American Journal of Physiology, vol. 258, no. 3, pp. H713–H721, 1990. View at Google Scholar
  19. H. V. Huikuri, S. M. Pikkujämsä, K. E. J. Airaksinen et al., “Sex-related differences in autonomic modulation of heart rate in middle- aged subjects,” Circulation, vol. 94, no. 2, pp. 122–125, 1996. View at Google Scholar
  20. K. Umetani, D. H. Singer, R. McCraty, and M. Atkinson, “Twenty-four hour time domain heart rate variability and heart rate: relations to age and gender over nine decades,” Journal of the American College of Cardiology, vol. 31, no. 3, pp. 593–601, 1998. View at Publisher · View at Google Scholar
  21. A. R. Galeev, L. N. Igisheva, and E. M. Kazin, “Heart rate variability in healthy sis-sixteen year old children,” Human Physiology, vol. 28, no. 4, pp. 54–58, 2002. View at Google Scholar
  22. D. Ramaekers, H. Ector, A. E. Aubert, A. Rubens, and F. Van De Werf, “Heart rate variability and heart rate in healthy volunteers: is the female autonomic nervous system cardioprotective?” European Heart Journal, vol. 19, no. 9, pp. 1334–1341, 1998. View at Publisher · View at Google Scholar
  23. D. Liao, R. W. Barnes, L. E. Chambless, R. J. Simpson, P. Sorlie, and G. Heiss, “Age, race, and sex differences in autonomic cardiac function measured by spectral analysis of heart rate variability—the ARIC study,” American Journal of Cardiology, vol. 76, no. 12, pp. 906–912, 1995. View at Publisher · View at Google Scholar
  24. H. V. Huikuri, M. J. Koistinen, S. Yli-Mäyry et al., “Impaired low-frequency oscillations of heart rate in patients with prior acute myocardial infarction and life-threatening arrhythmias,” American Journal of Cardiology, vol. 76, no. 1, pp. 56–60, 1995. View at Publisher · View at Google Scholar
  25. D. C. Shannon, D. W. Carley, and H. Benson, “Aging of modulation of heart rate,” American Journal of Physiology, vol. 253, no. 4, pp. H874–H877, 1987. View at Google Scholar
  26. X. J. Du, A. M. Dart, and R. A. Riemersma, “Sex differences in the parasympathetic nerve control of rat heart,” Clinical and Experimental Pharmacology and Physiology, vol. 21, no. 6, pp. 485–493, 1994. View at Google Scholar