Table of Contents Author Guidelines Submit a Manuscript
Journal of Aging Research
Volume 2012, Article ID 708905, 16 pages
http://dx.doi.org/10.1155/2012/708905
Review Article

A Qualitative Review of Balance and Strength Performance in Healthy Older Adults: Impact for Testing and Training

1Institute of Sport Science, Friedrich Schiller University Jena, Seidelstraβe 20, 07749 Jena, Germany
2Department of Sports Science, University of Konstanz, 78434 Konstanz, Germany

Received 24 July 2011; Revised 22 September 2011; Accepted 6 October 2011

Academic Editor: Yamni Nigam

Copyright © 2012 Urs Granacher et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. United Nations, “World Population Prospects: The 2008 Revision,” United Nations, 2009.
  2. U. E. Reinhardt, “Does the aging of the population really drive the demand for health care?” Health Affairs, vol. 22, no. 6, pp. 27–39, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. L. Z. Rubenstein, “Falls in older people: epidemiology, risk factors and strategies for prevention,” Age & Ageing, vol. 35, no. 2, pp. ii37–ii41, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  4. E. J. Weyler and A. Gandjour, “Socioeconomic burden of hip fractures in Germany,” Gesundheitswesen, vol. 69, no. 11, pp. 601–606, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  5. W. P. Berg, H. M. Alessio, E. M. Mills, and C. Tong, “Circumstances and consequences of falls in independent community-dwelling older adults,” Age & Ageing, vol. 26, no. 4, pp. 261–268, 1997. View at Publisher · View at Google Scholar · View at Scopus
  6. M. E. Tinetti, M. Speechley, and S. F. Ginter, “Risk factors for falls among elderly persons living in the community,” The New England Journal of Medicine, vol. 319, no. 26, pp. 1701–1707, 1988. View at Google Scholar · View at Scopus
  7. A. J. Campbell, M. J. Borrie, G. F. Spears, S. L. Jackson, J. S. Brown, and J. L. Fitzgerald, “Circumstances and consequences of falls experienced by a community population 70 years and over during a prospective study,” Age & Ageing, vol. 19, no. 2, pp. 136–141, 1990. View at Google Scholar · View at Scopus
  8. H. Luukinen, K. Koski, L. Hiltunen, and S. L. Kivelä, “Incidence rate of falls in an aged population in northern Finland,” Journal of Clinical Epidemiology, vol. 47, no. 8, pp. 843–850, 1994. View at Publisher · View at Google Scholar · View at Scopus
  9. B. E. Maki, P. J. Holliday, and A. K. Topper, “A prospective study of postural balance and risk of falling in an ambulatory and independent elderly population,” Journal of Gerontology, vol. 49, no. 2, pp. M72–M84, 1994. View at Google Scholar · View at Scopus
  10. P. Kannus, J. Parkkari, S. Koskinen et al., “Fall-induced injuries and deaths among older adults,” Journal of the American Medical Association, vol. 281, no. 20, pp. 1895–1899, 1999. View at Publisher · View at Google Scholar · View at Scopus
  11. J. Magaziner, E. M. Simonsick, T. M. Kashner, J. R. Hebel, and J. E. Kenzora, “Predictors of functional recovery one year following hospital discharge for hip fracture: a prospective study,” Journal of Gerontology, vol. 45, no. 3, pp. M101–M107, 1990. View at Google Scholar · View at Scopus
  12. L. Z. Rubenstein and K. R. Josephson, “The epidemiology of falls and syncope,” Clinics in Geriatric Medicine, vol. 18, no. 2, pp. 141–158, 2002. View at Publisher · View at Google Scholar · View at Scopus
  13. D. A. Skelton, C. A. Greig, J. M. Davies, and A. Young, “Strength, power and related functional ability of healthy people aged 65–89 years,” Age & Ageing, vol. 23, no. 5, pp. 371–377, 1994. View at Google Scholar · View at Scopus
  14. G. J. Salem, M. Y. Wang, J. T. Young, M. Marion, and G. A. Greendale, “Knee strength and lower- and higher-intensity functional performance in older adults,” Medicine and Science in Sports and Exercise, vol. 32, no. 10, pp. 1679–1684, 2000. View at Google Scholar · View at Scopus
  15. U. Granacher, M. Gruber, and A. Gollhofer, “Force production capacity and functional reflex activity in young and elderly men,” Aging Clinical and Experimental Research, vol. 22, no. 5-6, pp. 374–382, 2010. View at Publisher · View at Google Scholar · View at PubMed
  16. C. Suetta, S. P. Magnusson, N. Beyer, and M. Kjaer, “Effect of strength training on muscle function in elderly hospitalized patients: review,” Scandinavian Journal of Medicine and Science in Sports, vol. 17, no. 5, pp. 464–472, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  17. D. A. Skelton, J. Kennedy, and O. M. Rutherford, “Explosive power and asymmetry in leg muscle function in frequent fallers and non-fallers aged over 65,” Age & Ageing, vol. 31, no. 2, pp. 119–125, 2002. View at Publisher · View at Google Scholar · View at Scopus
  18. U. Granacher, S. A. Bridenbaugh, T. Muehlbauer, A. Wehrle, and R. W. Kressig, “Age-related effects on postural control under multi-task conditions,” Gerontology, vol. 57, no. 3, pp. 247–255, 2011. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  19. M. Pijnappels, M. F. Bobbert, and J. H. van Dieën, “Push-off reactions in recovery after tripping discriminate young subjects, older non-fallers and older fallers,” Gait & Posture, vol. 21, no. 4, pp. 388–394, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  20. O. Beauchet, C. Annweiler, V. Dubost et al., “Stops walking when talking: a predictor of falls in older adults?” European Journal of Neurology, vol. 16, no. 7, pp. 786–795, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. J. K. Petrella, J. S. Kim, S. C. Tuggle, S. R. Hall, and M. M. Bamman, “Age differences in knee extension power, contractile velocity, and fatigability,” Journal of Applied Physiology, vol. 98, no. 1, pp. 211–220, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  22. K. Häkkinen, M. Alen, M. Kallinen et al., “Muscle CSA, force production, and activation of leg extensors during isometric and dynamic actions in middle-aged and elderly men and women,” Journal of Aging and Physical Activity, vol. 6, no. 3, pp. 232–247, 1998. View at Google Scholar · View at Scopus
  23. M. Izquierdo, J. Ibañez, E. Gorostiaga et al., “Maximal strength and power characteristics in isometric and dynamic actions of the upper and lower extremities in middle-aged and older men,” Acta Physiologica Scandinavica, vol. 167, no. 1, pp. 57–68, 1999. View at Publisher · View at Google Scholar · View at Scopus
  24. E. L. Lamoureux, W. A. Sparrow, A. Murphy, and R. U. Newton, “Differences in the neuromuscular capacity and lean muscle tissue in old and older community-dwelling adults,” The Journals of Gerontology Series A, vol. 56, no. 6, pp. M381–M385, 2001. View at Google Scholar · View at Scopus
  25. E. Asmussen and K. Heeboll-Nielsen, “Isometric muscle strength in relation to age in men and women,” Ergonomics, vol. 5, no. 1, pp. 167–169, 1962. View at Google Scholar
  26. L. Larsson, G. Grimby, and J. Karlsson, “Muscle strength and speed of movement in relation to age and muscle morphology,” Journal of Applied Physiology, vol. 46, no. 3, pp. 451–456, 1979. View at Google Scholar · View at Scopus
  27. A. Macaluso, M. A. Nimmo, J. E. Foster, M. Cockburn, N. C. McMillan, and G. De Vito, “Contractile muscle volume and agonist-antagonist coactivation account for differences in torque between young and older women,” Muscle & Nerve, vol. 25, no. 6, pp. 858–863, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  28. D. G. Thelen, A. B. Schultz, and N. B. Alexander, “Effects of age on rapid ankle torque development,” The Journals of Gerontology Series A, vol. 51, no. 5, pp. M226–M232, 1996. View at Google Scholar · View at Scopus
  29. D. Samuel and P. J. Rowe, “Effect of ageing on isometric strength through joint range at knee and hip joints in three age groups of older adults,” Gerontology, vol. 55, no. 6, pp. 621–629, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  30. C. Bosco and P. V. Komi, “Influence of aging on the mechanical behavior of leg extensor muscles,” European Journal of Applied Physiology and Occupational Physiology, vol. 45, no. 2-3, pp. 209–219, 1980. View at Google Scholar · View at Scopus
  31. C. J. McNeil, A. A. Vandervoort, and C. L. Rice, “Peripheral impairments cause a progressive age-related loss of strength and velocity-dependent power in the dorsiflexors,” Journal of Applied Physiology, vol. 102, no. 5, pp. 1962–1968, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  32. J. M. Thom, C. I. Morse, K. M. Birch, and M. V. Narici, “Triceps surae muscle power, volume, and quality in older versus younger healthy men,” The Journals of Gerontology Series A, vol. 60, no. 9, pp. 1111–1117, 2005. View at Google Scholar · View at Scopus
  33. A. Shumway-Cook and M. H. Woollacott, Motor Control: Translating Research into Clinical Practice, Lippincott Williams & Wilkins, Philadelphia, Pa, USA, 2007.
  34. M. H. Woollacott and P. F. Tang, “Balance control during walking in the older adult: research and its implications,” Physical Therapy, vol. 77, no. 6, pp. 646–660, 1997. View at Google Scholar · View at Scopus
  35. L. A. Talbot, R. J. Musiol, E. K. Witham, and E. J. Metter, “Falls in young, middle-aged and older community dwelling adults: perceived cause, environmental factors and injury,” BMC Public Health, vol. 5, article 86, 2005. View at Publisher · View at Google Scholar · View at PubMed
  36. S. R. Lord, J. A. Ward, P. Williams, and K. J. Anstey, “An epidemiological study of falls in older community-dwelling women: the Randwick falls and fractures study,” Australian Journal of Public Health, vol. 17, no. 3, pp. 240–245, 1993. View at Google Scholar · View at Scopus
  37. M. Hytonen, I. Pyykko, H. Aalto, and J. Starck, “Postural control and age,” Acta Oto-Laryngologica, vol. 113, no. 2, pp. 119–122, 1993. View at Google Scholar · View at Scopus
  38. T. Oberg, A. Karsznia, and K. Oberg, “Basic gait parameters: reference data for normal subjects, 10-79 years of age,” Journal of Rehabilitation Research and Development, vol. 30, no. 2, pp. 210–223, 1993. View at Google Scholar · View at Scopus
  39. P. Era, P. Sainio, S. Koskinen, P. Haavisto, M. Vaara, and A. Aromaa, “Postural balance in a random sample of 7,979 subjects aged 30 years and over,” Gerontology, vol. 52, no. 4, pp. 204–213, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  40. U. Granacher, T. Mühlbauer, S. Bridenbaugh, A. Wehrle, and R. W. Kressig, “Age-related differences during single and multi-task walking,” Deutsche Zeitschrift für Sportmedizin, vol. 61, no. 11, pp. 258–263, 2010. View at Google Scholar
  41. N. R. Colledge, P. Cantley, I. Peaston, H. Brash, S. Lewis, and J. A. Wilson, “Ageing and balance: the measurement of spontaneous sway by posturography,” Gerontology, vol. 40, no. 5, pp. 273–278, 1994. View at Google Scholar
  42. I. G. Amiridis, V. Hatzitaki, and F. Arabatzi, “Age-induced modifications of static postural control in humans,” Neuroscience Letters, vol. 350, no. 3, pp. 137–140, 2003. View at Publisher · View at Google Scholar
  43. M. L. Callisaya, L. Blizzard, M. D. Schmidt, J. L. McGinley, and V. K. Srikanth, “Ageing and gait variability-a population-based study of older people,” Age & Ageing, vol. 39, no. 2, Article ID afp250, pp. 191–197, 2010. View at Publisher · View at Google Scholar · View at PubMed
  44. F. B. Horak and J. M. Macpherson, “Postural orientation and equilibrium,” in Handbook of Physiology—Section 12: Exercise: Regulation and Integration of Multiple Systems, L. B. Rowell and J. T. Shepherd, Eds., pp. 255–292, Oxford University Press, New York, NY, USA, 1996. View at Google Scholar
  45. M. Woollacott and A. Shumway-Cook, “Attention and the control of posture and gait: a review of an emerging area of research,” Gait & Posture, vol. 16, no. 1, pp. 1–14, 2002. View at Publisher · View at Google Scholar
  46. H. Pashler, “Dual-task interference in simple tasks: data and theory,” Psychological Bulletin, vol. 116, no. 2, pp. 220–244, 1994. View at Google Scholar · View at Scopus
  47. B. E. Maki and W. E. McIlroy, “Cognitive demands and cortical control of human balance-recovery reactions,” Journal of Neural Transmission, vol. 114, no. 10, pp. 1279–1296, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  48. C. Rosano, H. Aizenstein, J. Brach, A. Longenberger, S. Studenski, and A. B. Newman, “Gait measures indicate underlying focal gray matter atrophy in the brain of older adults,” The Journals of Gerontology Series A, vol. 63, no. 12, pp. 1380–1388, 2008. View at Google Scholar · View at Scopus
  49. G. F. Marchetti and S. L. Whitney, “Older adults and balance dysfunction,” Neurologic Clinics, vol. 23, no. 3, pp. 785–805, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  50. A. Gabell, M. A. Simons, and U. S. L. Nayak, “Falls in the healthy elderly: predisposing causes,” Ergonomics, vol. 28, no. 7, pp. 965–975, 1985. View at Google Scholar · View at Scopus
  51. S. I. Lin and M. H. Woollacott, “Postural muscle responses following changing balance threats in young, stable older, and unstable older adults,” Journal of Motor Behavior, vol. 34, no. 1, pp. 37–44, 2002. View at Google Scholar · View at Scopus
  52. P. F. Tang and M. H. Woollacott, “Inefficient postural responses to unexpected slips during walking in older adults,” The Journals of Gerontology Series A, vol. 53, no. 6, pp. M471–M480, 1998. View at Google Scholar · View at Scopus
  53. M. J. Pavol, T. M. Owings, K. T. Foley, and M. D. Grabiner, “Mechanisms leading to a fall from an induced trip in healthy older adults,” The Journals of Gerontology Series A, vol. 56, no. 7, pp. M428–M437, 2001. View at Google Scholar · View at Scopus
  54. J. J. Knapik, J. E. Wright, R. H. Mawdsley, and J. M. Braun, “Isokinetic, isometric and isotonic strength relationships,” Archives of Physical Medicine and Rehabilitation, vol. 64, no. 2, pp. 77–80, 1983. View at Google Scholar · View at Scopus
  55. E. T. Hsiao-Wecksler, K. Katdare, J. Matson, W. Liu, L. A. Lipsitz, and J. J. Collins, “Predicting the dynamic postural control response from quiet-stance behavior in elderly adults,” Journal of Biomechanics, vol. 36, no. 9, pp. 1327–1333, 2003. View at Publisher · View at Google Scholar · View at Scopus
  56. H. Shimada, S. Obuchi, N. Kamide, Y. Shiba, M. Okamoto, and S. Kakurai, “Relationship with dynamic balance function during standing and walking,” American Journal of Physical Medicine and Rehabilitation, vol. 82, no. 7, pp. 511–516, 2003. View at Publisher · View at Google Scholar · View at Scopus
  57. H. G. Kang and J. B. Dingwell, “A direct comparison of local dynamic stability during unperturbed standing and walking,” Experimental Brain Research, vol. 172, no. 1, pp. 35–48, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  58. K. Ringsberg, P. Gerdhem, J. Johansson, and K. J. Obrant, “Is there a relationship between balance, gait performance and muscular strength in 75-year-old women?” Age & Ageing, vol. 28, no. 3, pp. 289–293, 1999. View at Publisher · View at Google Scholar · View at Scopus
  59. D. M. Buchner, E. B. Larson, E. H. Wagner, T. D. Koepsell, and B. J. De Lateur, “Evidence for a non-linear relationship between leg strength and gait speed,” Age & Ageing, vol. 25, no. 5, pp. 386–391, 1996. View at Publisher · View at Google Scholar · View at Scopus
  60. J. F. Bean, D. K. Kiely, S. Herman et al., “The relationship between leg power and physical performance in mobility-limited older people,” Journal of the American Geriatrics Society, vol. 50, no. 3, pp. 461–467, 2002. View at Publisher · View at Google Scholar · View at Scopus
  61. American College of Sports Medicine, ACSM's Guidelines for Exercise Testing and Prescription, Lippincott, Williams & Wilkins, Philadelphia, Pa, USA, 2009.
  62. J. M. Reynolds, T. J. Gordon, and R. A. Robergs, “Prediction of one repetition maximum strength from multiple repetition maximum testing and anthropometry,” Journal of Strength and Conditioning Research, vol. 20, no. 3, pp. 584–592, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  63. M. H. Stone, W. A. Sands, and M. E. Stone, Principles and Practice of Resistance Training, Human Kinetics, Champaign, Ill, USA, 2007.
  64. U. Granacher, C. Wick, N. Rueck, C. Esposito, R. Roth, and L. Zahner, “Promoting balance and strength in the middle-aged workforce,” International Journal of Sports Medicine, vol. 32, no. 1, pp. 35–44, 2011. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  65. W. J. Chodzko-Zajko, D. N. Proctor, M. A. Fiatarone Singh, C. T. Minson, C. R. Nigg, and G. J. Salem, “Exercise and physical activity for older adults,” Medicine and Science in Sports and Exercise, vol. 41, no. 7, pp. 1510–1530, 2009. View at Publisher · View at Google Scholar · View at PubMed
  66. A. J. Lara, J. Abián, L. M. Alegre, L. Jiménez, and X. Aguado, “Assessment of power output in jump tests for applicants to a sports sciences degree,” Journal of Sports Medicine and Physical Fitness, vol. 46, no. 3, pp. 419–424, 2006. View at Google Scholar · View at Scopus
  67. U. Lindemann, H. Claus, M. Stuber et al., “Measuring power during the sit-to-stand transfer,” European Journal of Applied Physiology, vol. 89, no. 5, pp. 466–470, 2003. View at Google Scholar · View at Scopus
  68. R. W. Bohannon, “Test-retest reliability of the five-repetition sit-to-stand test: a systematic review of the literature involving adults,” Journal of Strength and Conditioning Research, vol. 25, no. 11, pp. 3205–3207, 2011. View at Publisher · View at Google Scholar · View at PubMed
  69. A. Zech, S. Steib, E. Freiberger, and K. Pfeifer, “Functional muscle power testing in young, middle-aged, and community-dwelling nonfrail and prefrail older adults,” Archives of Physical Medicine and Rehabilitation, vol. 92, no. 6, pp. 967–971, 2011. View at Publisher · View at Google Scholar · View at PubMed
  70. R. W. Kressig, O. Beauchet, J. Anders et al., “Guidelines for clinical applications of spatio-temporal gait analysis in older adults,” Aging Clinical and Experimental Research, vol. 18, no. 2, pp. 174–176, 2006. View at Google Scholar
  71. L. Lundin-Olsson, L. Nyberg, and Y. Gustafson, “'Stops walking when talking' as a predictor of falls in elderly people,” The Lancet, vol. 349, no. 9052, p. 617, 1997. View at Google Scholar
  72. L. I. Wolfson, R. Whipple, P. Amerman, and A. Kleinberg, “Stressing the postural response. A quantitative method for testing balance,” Journal of the American Geriatrics Society, vol. 34, no. 12, pp. 845–850, 1986. View at Google Scholar
  73. T. S. Kapteyn, W. Bles, C. J. Njiokiktjien, L. Kodde, C. H. Massen, and J. M. Mol, “Standardization in platform stabilometry being a part of posturography,” Agressologie, vol. 24, no. 7, pp. 321–326, 1983. View at Google Scholar · View at Scopus
  74. P. K. Yim-Chiplis and L. A. Talbot, “Defining and measuring balance in adults,” Biological Research for Nursing, vol. 1, no. 4, pp. 321–331, 2000. View at Google Scholar · View at Scopus
  75. B. J. Vellas, L. Z. Rubenstein, P. J. Ousset et al., “One-leg standing balance and functional status in a population of 512 community-living elderly persons,” Aging Clinical and Experimental Research, vol. 9, no. 1-2, pp. 95–98, 1997. View at Google Scholar · View at Scopus
  76. B. J. Vellas, S. J. Wayne, L. Romero, R. N. Baumgartner, L. Z. Rubenstein, and P. J. Garry, “One-leg balance is an important predictor of injurious falls in older persons,” Journal of the American Geriatrics Society, vol. 45, no. 6, pp. 735–738, 1997. View at Google Scholar · View at Scopus
  77. D. Podsiadlo and S. Richardson, “The timed “Up & Go”: a test of basic functional mobility for frail elderly persons,” Journal of the American Geriatrics Society, vol. 39, no. 2, pp. 142–148, 1991. View at Google Scholar · View at Scopus
  78. K. Rockwood, E. Awalt, D. Carver, and C. MacKnight, “Feasibility and measurement properties of the functional reach and the timed up and go tests in the Canadian study of health and aging,” The Journals of Gerontology Series A, vol. 55, no. 2, pp. M70–M73, 2000. View at Google Scholar · View at Scopus
  79. A. Shumway-Cook, S. Brauer, and M. Woollacott, “Predicting the probability for falls in community-dwelling older adults using the Timed Up & Go test,” Physical Therapy, vol. 80, no. 9, pp. 896–903, 2000. View at Google Scholar · View at Scopus
  80. O. Beauchet, C. Annweiler, F. Assal et al., “Imagined Timed Up & Go test: a new tool to assess higher-level gait and balance disorders in older adults?” Journal of the Neurological Sciences, vol. 294, no. 1-2, pp. 102–106, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  81. M. Montero-Odasso, M. Schapira, C. Varela et al., “Gait velocity in senior people. An easy test for detecting mobility impairment in community elderly,” The Journal of Nutrition, Health & Aging, vol. 8, no. 5, pp. 340–343, 2004. View at Google Scholar · View at Scopus
  82. M. Montero-Odasso, M. Schapira, E. R. Soriano et al., “Gait velocity as a single predictor of adverse events in healthy seniors aged 75 years and older,” The Journals of Gerontology Series A, vol. 60, no. 10, pp. 1304–1309, 2005. View at Google Scholar · View at Scopus
  83. R. E. Hoxie, L. Z. Rubenstein, H. Hoenig, and B. R. Gallagher, “The older pedestrian,” Journal of the American Geriatrics Society, vol. 42, no. 4, pp. 444–450, 1994. View at Google Scholar · View at Scopus
  84. R. M. Guimaraes and B. Isaacs, “Characteristics of the gait in old people who fall,” International Rehabilitation Medicine, vol. 2, no. 4, pp. 177–180, 1980. View at Google Scholar · View at Scopus
  85. G. R. Fernie, C. I. Gryfe, P. J. Holliday, and A. Llewellyn, “The relationship of postural sway in standing to the incidence of falls in geriatric subjects,” Age & Ageing, vol. 11, no. 1, pp. 11–16, 1982. View at Google Scholar · View at Scopus
  86. M. G. Tucker, J. J. Kavanagh, S. Morrison, and R. S. Barrett, “What are the relations between voluntary postural sway measures and falls-history status in community-dwelling older adults?” Archives of Physical Medicine and Rehabilitation, vol. 91, no. 5, pp. 750–758, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  87. J. M. Hausdorff, H. K. Edelberg, S. L. Mitchell, A. L. Goldberger, and J. Y. Wei, “Increased gait unsteadiness in community-dwelling elderly failers,” Archives of Physical Medicine and Rehabilitation, vol. 78, no. 3, pp. 278–283, 1997. View at Publisher · View at Google Scholar · View at Scopus
  88. M. P. Besser, K. Kmieczak, L. Schwartz et al., “Representation of temporal spatial gait parameters using means in adults without impairment,” Gait & Posture, vol. 9, no. 2, p. 113, 1999. View at Google Scholar
  89. J. H. Hollman, E. M. McDade, and R. C. Petersen, “Normative spatiotemporal gait parameters in older adults,” Gait & Posture, vol. 34, no. 1, pp. 111–118, 2011. View at Publisher · View at Google Scholar · View at PubMed
  90. R. W. Kressig, F. R. Herrmann, R. Grandjean, J. P. Michel, and O. Beauchet, “Gait variability while dual-tasking: fall predictor in older inpatients?” Aging Clinical and Experimental Research, vol. 20, no. 2, pp. 123–130, 2008. View at Google Scholar · View at Scopus
  91. D. Wild, U. S. L. Nayak, and B. Isaacs, “Prognosis of falls in old people at home,” Journal of Epidemiology and Community Health, vol. 35, no. 3, pp. 200–204, 1981. View at Google Scholar · View at Scopus
  92. P. W. Duncan and S. Studenski, “Balance and gait measures,” in Annual Review of Gerontology and Geriatrics, M. P. Lawton and J. A. Teresi, Eds., pp. 76–92, Springer, New York, NY, USA, 1994. View at Google Scholar
  93. J. M. Chandler, P. W. Duncan, and S. A. Studenski, “Balance performance on the postural stress test: comparison of young adults, healthy elderly and fallers,” Physical Therapy, vol. 70, no. 7, pp. 410–415, 1990. View at Google Scholar · View at Scopus
  94. M. J. Pavol, E. F. Runtz, B. J. Edwards, and Y. C. Pai, “Age influences the outcome of a slipping perturbation during initial but not repeated exposures,” The Journals of Gerontology Series A, vol. 57, no. 8, pp. M496–M503, 2002. View at Google Scholar · View at Scopus
  95. B. N. Smith, R. L. Segal, and S. L. Wolf, “Long latency ankle responses to dynamic perturbation in older fallers and non-fallers,” Journal of the American Geriatrics Society, vol. 44, no. 12, pp. 1447–1454, 1996. View at Google Scholar · View at Scopus
  96. Y. C. Pai, E. Wang, D. D. Espy, and T. Bhatt, “Adaptability to perturbation as a predictor of future falls: a preliminary prospective study,” Journal of Geriatric Physical Therapy, vol. 33, no. 2, pp. 50–55, 2010. View at Google Scholar · View at Scopus
  97. N. K. Latham, D. A. Bennett, C. M. Stretton, and C. S. Anderson, “Systematic review of progressive resistance strength training in older adults,” The Journals of Gerontology Series A, vol. 59, no. 1, pp. 48–61, 2004. View at Google Scholar · View at Scopus
  98. U. Granacher, Balance and Strength Performance in Children, Adolescents, and Seniors, Kovac, 2011.
  99. U. Granacher, M. Gruber, and A. Gollhofer, “Resistance training and neuromuscular performance in seniors,” International Journal of Sports Medicine, vol. 30, no. 9, pp. 652–657, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  100. U. Granacher, A. Gollhofer, and D. Strass, “Training induced adaptations in characteristics of postural reflexes in elderly men,” Gait & Posture, vol. 24, no. 4, pp. 459–466, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  101. N. K. Latham, C. S. Anderson, A. Lee, D. A. Bennett, A. Moseley, and I. D. Cameron, “A randomized, controlled trial of quadriceps resistance exercise and vitamin D in frail older people: the frailty interventions trial in elderly subjects (FITNESS),” Journal of the American Geriatrics Society, vol. 51, no. 3, pp. 291–299, 2003. View at Publisher · View at Google Scholar · View at Scopus
  102. U. Granacher, T. Muehlbauer, L. Zahner, A. Gollhofer, and R. W. Kressig, “Comparison of traditional and recent approaches in the promotion of balance and strength in older adults,” Sports Medicine, vol. 41, no. 5, pp. 377–400, 2011. View at Publisher · View at Google Scholar · View at PubMed
  103. N. J. de Vos, N. A. Singh, D. A. Ross, T. M. Stavrinos, R. Orr, and M. A. F. Singh, “Optimal load for increasing muscle power during explosive resistance training in older adults,” The Journals of Gerontology Series A, vol. 60, no. 5, pp. 638–647, 2005. View at Google Scholar · View at Scopus
  104. R. Orr, N. J. de Vos, N. A. Singh, D. A. Ross, T. M. Stavrinos, and M. A. Fiatarone-Singh, “Power training improves balance in healthy older adults,” The Journals of Gerontology Series A, vol. 61, no. 1, pp. 78–85, 2006. View at Google Scholar · View at Scopus
  105. U. Granacher, M. Gruber, D. Strass, and A. Gollhofer, “The impact of sensorimotor training in elderly men on maximal and explosive force production capacity,” Deutsche Zeitschrift für Sportmedizin, vol. 58, no. 12, pp. 446–451, 2007. View at Google Scholar · View at Scopus
  106. M. M. Madureira, L. Takayama, A. L. Gallinaro, V. F. Caparbo, R. A. Costa, and R. M. R. Pereira, “Balance training program is highly effective in improving functional status and reducing the risk of falls in elderly women with osteoporosis: a randomized controlled trial,” Osteoporosis International, vol. 18, no. 4, pp. 419–425, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  107. C. Sherrington, A. Tiedemann, N. Fairhall, J. C. Close, and S. R. Lord, “Exercise to prevent falls in older adults: an updated meta-analysis and best practice recommendations,” New South Wales Public Health Bulletin, vol. 22, no. 3-4, pp. 78–83, 2011. View at Google Scholar