Table of Contents Author Guidelines Submit a Manuscript
Journal of Advanced Transportation
Volume 2017 (2017), Article ID 6716820, 11 pages
Research Article

Reactive Path Planning Approach for Docking Robots in Unknown Environment

School of Marine Science and Technology, Northwestern Polytechnical University, Xi’an 710072, China

Correspondence should be addressed to Weisheng Yan

Received 13 May 2017; Accepted 6 July 2017; Published 12 September 2017

Academic Editor: Cheng S. Chin

Copyright © 2017 Peng Cui et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Autonomous robots need to be recharged and exchange information with the host through docking in the long-distance tasks. Therefore, feasible path is required in the docking process to guide the robot and adjust its pose. However, when there are unknown obstacles in the work area, it becomes difficult to determine the feasible path for docking. This paper presents a reactive path planning approach named Dubins-APF (DAPF) to solve the path planning problem for docking in unknown environment with obstacles. In this proposed approach the Dubins curves are combined with the designed obstacle avoidance potential field to plan the feasible path. Firstly, an initial path is planned and followed according to the configurations of the robot and the docking station. Then when the followed path is evaluated to be infeasible, the intermediate configuration is calculated as well as the replanned path based on the obstacle avoidance potential field. The robot will be navigated to the docking station with proper pose eventually via the DAPF approach. The proposed DAPF approach is efficient and does not require the prior knowledge about the environment. Simulation results are given to validate the effectiveness and feasibility of the proposed approach.