Table of Contents Author Guidelines Submit a Manuscript
Journal of Advanced Transportation
Volume 2017, Article ID 8092718, 9 pages
https://doi.org/10.1155/2017/8092718
Research Article

Doppler Effect-Based Automatic Landing Procedure for UAV in Difficult Access Environments

Institute of Telecommunications, Faculty of Electronics, Military University of Technology, Gen. Sylwester Kaliski Str. No. 2, 00-908 Warsaw, Poland

Correspondence should be addressed to Jan M. Kelner; lp.ude.taw@renlek.naj

Received 23 June 2017; Accepted 14 August 2017; Published 4 October 2017

Academic Editor: Seungjae Lee

Copyright © 2017 Jan M. Kelner and Cezary Ziółkowski. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Tortonesi, C. Stefanelli, E. Benvegnu, K. Ford, N. Suri, and M. Linderman, “Multiple-UAV coordination and communications in tactical edge networks,” IEEE Communications Magazine, vol. 50, no. 10, pp. 48–55, 2012. View at Publisher · View at Google Scholar · View at Scopus
  2. M. A. Ma'Sum, M. K. Arrofi, G. Jati et al., “Simulation of intelligent Unmanned Aerial Vehicle (UAV) for military surveillance,” in Proceedings of the 2013 5th International Conference on Advanced Computer Science and Information Systems, ICACSIS 2013, pp. 161–166, September 2013. View at Publisher · View at Google Scholar · View at Scopus
  3. D. Orfanus, E. P. De Freitas, and F. Eliassen, “Self-Organization as a Supporting Paradigm for Military UAV Relay Networks,” IEEE Communications Letters, vol. 20, no. 4, pp. 804–807, 2016. View at Publisher · View at Google Scholar · View at Scopus
  4. J. A. J. Berni, P. J. Zarco-Tejada, L. Suárez, and E. Fereres, “Thermal and narrowband multispectral remote sensing for vegetation monitoring from an unmanned aerial vehicle,” IEEE Transactions on Geoscience and Remote Sensing, vol. 47, no. 3, pp. 722–738, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. J. Wijitdechakul, S. Sasaki, Y. Kiyoki, and C. Koopipat, “UAV-based multispectral image analysis system with semantic computing for agricultural health conditions monitoring and real-time management,” in Proceedings of the 2016 International Electronics Symposium (IES), pp. 459–464, Denpasar, Indonesia, September 2016. View at Publisher · View at Google Scholar
  6. P. B. Quater, F. Grimaccia, S. Leva, M. Mussetta, and M. Aghaei, “Light Unmanned Aerial Vehicles (UAVs) for cooperative inspection of PV plants,” IEEE Journal of Photovoltaics, vol. 4, no. 4, pp. 1107–1113, 2014. View at Publisher · View at Google Scholar · View at Scopus
  7. F. Grimaccia, M. Aghaei, M. Mussetta, S. Leva, and P. B. Quater, “Planning for PV plant performance monitoring by means of unmanned aerial systems (UAS),” International Journal of Energy and Environmental Engineering, vol. 6, no. 1, pp. 47–54, 2015. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Daliento, A. Chouder, P. Guerriero et al., “Monitoring, diagnosis, and power forecasting for photovoltaic fields: a review,” International Journal of Photoenergy, vol. 2017, Article ID 1356851, 13 pages, 2017. View at Publisher · View at Google Scholar
  9. S. Babak, M. Myslovych, and R. Sysak, “Module structure of UAV-based computerized systems for remote environment monitoring of energy facilities,” in Proceedings of the 17th International Conference Computational Problems of Electrical Engineering, CPEE 2016, September 2016. View at Publisher · View at Google Scholar · View at Scopus
  10. Y. Lu, D. Macias, Z. S. Dean, N. R. Kreger, and P. K. Wong, “A UAV-Mounted Whole Cell Biosensor System for Environmental Monitoring Applications,” IEEE Transactions on Nanobioscience, vol. 14, no. 8, pp. 811–817, 2015. View at Publisher · View at Google Scholar · View at Scopus
  11. D. Erdos, A. Erdos, and S. E. Watkins, “An experimental UAV system for search and rescue challenge,” IEEE Aerospace and Electronic Systems Magazine, vol. 28, no. 5, pp. 32–37, 2013. View at Publisher · View at Google Scholar · View at Scopus
  12. K. A. Ghamry, M. A. Kamel, and Y. Zhang, “Cooperative forest monitoring and fire detection using a team of UAVs-UGVs,” in Proceedings of the 2016 International Conference on Unmanned Aircraft Systems, ICUAS 2016, pp. 1206–1211, June 2016. View at Publisher · View at Google Scholar · View at Scopus
  13. C. Yuan, Z. Liu, and Y. Zhang, “Vision-based forest fire detection in aerial images for firefighting using UAVs,” in Proceedings of the 2016 International Conference on Unmanned Aircraft Systems, ICUAS 2016, pp. 1200–1205, June 2016. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Rathinam, P. Almeida, Z. Kim et al., “Autonomous searching and tracking of a river using an UAV,” in Proceedings of the 2007 American Control Conference, ACC, pp. 359–364, July 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. D. Popescu, L. Ichim, and T. Caramihale, “Flood areas detection based on UAV surveillance system,” in Proceedings of the 19th International Conference on System Theory, Control and Computing, ICSTCC 2015 - Joint Conference SINTES 19, SACCS 15, SIMSIS 19, pp. 753–758, October 2015. View at Publisher · View at Google Scholar · View at Scopus
  16. UNICEF website, https://www.unicef.org/.
  17. AirVein, 11-Aug-], http://www.airvein.pl/.
  18. G. Hoareau, J. J. Liebenberg, J. G. Musial, and T. R. Whitman, “Package transport by unmanned aerial vehicles,” US0068265 A1, 2016. View at Google Scholar
  19. P. D. Groves, Principles of GNSS, inertial, and multisensor integrated navigation systems, Artech House, Boston, MA, USA, 2nd edition, 2013.
  20. M. S. Grewal, A. P. Andrews, and C. G. Bartone, Wiley-Interscience, Hoboken, 3rd edition, 2013.
  21. E. D. Kaplan, Understanding GPS: Principles and applications, Artech House, Boston, MA, USA, 2nd edition, 2005.
  22. F. van Diggelen, A-GPS: Assisted GPS, GNSS, and SBAS, Artech House, 2009.
  23. S. Ward, J. Hensler, B. Alsalam, and L. F. Gonzalez, “Autonomous UAVs wildlife detection using thermal imaging, predictive navigation and computer vision,” in Proceedings of the 2016 IEEE Aerospace Conference, AERO 2016, March 2016. View at Publisher · View at Google Scholar · View at Scopus
  24. F. S. Leira, T. A. Johansen, and T. I. Fossen, “Automatic detection, classification and tracking of objects in the ocean surface from UAVs using a thermal camera,” in Proceedings of the 2015 IEEE Aerospace Conference, AERO 2015, March 2015. View at Publisher · View at Google Scholar · View at Scopus
  25. H. Sheng, H. Chao, C. Coopmans, J. Han, M. McKee, and Y. Chen, “Low-cost UAV-based thermal infrared remote sensing: Platform, calibration and applications,” in Proceedings of the 2010 IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications, MESA 2010, pp. 38–43, July 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. C. Leśnik, P. Serafin, and A. Kawalec, “Azimuth ambiguity suppression in SAR images using Doppler-sensitive signals,” Bulletin of the Polish Academy of Sciences: Technical Sciences, vol. 63, no. 1, pp. 221–227, 2015. View at Publisher · View at Google Scholar · View at Scopus
  27. B. Dawidowicz, A. Gadoś, A. Gorzelańczyk et al., “First polish SAR trials,” IEE Proceedings: Radar, Sonar and Navigation, vol. 153, no. 2, pp. 135–143, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Caris, S. Stanko, M. Malanowski et al., “Mm-Wave SAR demonstrator as a test bed for advanced solutions in microwave imaging,” IEEE Aerospace and Electronic Systems Magazine, vol. 29, no. 7, pp. 8–15, 2014. View at Publisher · View at Google Scholar · View at Scopus
  29. L. J. Ippolito, “Satellite Communications Systems Engineering: Atmospheric Effects, Satellite Link Design and System Performance,” Satellite Communications Systems Engineering: Atmospheric Effects, Satellite Link Design and System Performance, pp. 1–376, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. Instrument flying handbook, CreateSpace Independent Publishing Platform, 2013.
  31. M. Kayton and W. R. Fried, Avionics Navigation Systems, John Wiley & Sons, Inc., Hoboken, NJ, USA, 1997. View at Publisher · View at Google Scholar
  32. J. Rafa and C. Ziółkowski, “Influence of transmitter motion on received signal parameters – Analysis of the Doppler effect,” Wave Motion, vol. 45, no. 3, pp. 178–190, 2008. View at Google Scholar
  33. J. M. Kelner, Analizadopplerowskiej methodlokalizacjizródelemisjifalradiowych, rozprawadoktorska (Analysis of the Doppler location method of the radio waves emission sources, Military University of Technology, 2010.
  34. P. Gajewski, C. Ziółkowski, and J. M. Kelner, “Using SDF method for simultaneous location of multiple radio transmitters,” in Proceedings of the 2012 19th International Conference on Microwaves, Radar and Wireless Communications, MIKON 2012, pp. 634–637, May 2012. View at Publisher · View at Google Scholar · View at Scopus
  35. A. T. de Hoop, “Comments on: J. Rafa, C. Zi\'olkowski, “Influence of transmitter motion on received signal parameters---an analysis of the Doppler effect'', Wave Motion 45 (2008) 178--190 [MR2449241],” Wave Motion. An International Journal Reporting Research on Wave Phenomena, vol. 46, no. 1, pp. 89–91, 2009. View at Publisher · View at Google Scholar · View at MathSciNet
  36. N. A. Lehtomaki, T. C. Poling, and D. A. Schuyler, “Single platform Doppler geolocation,” Article ID 130794, pp. 03–2015, 2015. View at Google Scholar
  37. J. M. Kelner, C. Ziółkowski, and L. Nowosielski, “Local navigation system for VTOLs used on the vessels,” in Proceedings of the IEEE/ION Position, Location and Navigation Symposium, PLANS 2016, pp. 415–421, April 2016. View at Publisher · View at Google Scholar · View at Scopus
  38. J. M. Kelner, C. Ziółkowski, L. Nowosielski, and M. Wnuk, “Reserve navigation system for ships based on coastal radio beacons,” in Proceedings of the IEEE/ION Position, Location and Navigation Symposium, PLANS 2016, pp. 393–402, April 2016. View at Publisher · View at Google Scholar · View at Scopus
  39. J. M. Kelner, C. Ziółkowski, and P. Marszalek, “Influence of the frequency stability on the emitter position in SDF method,” in Proceedings of the 2016 International Conference on Military Communications and Information Systems, ICMCIS 2016, May 2016. View at Publisher · View at Google Scholar · View at Scopus
  40. J. M. Kelner and C. Ziółkowski, “The use of SDF technology to BPSK and QPSK emission sources’ location,” Przeglad Elektrotechniczny, vol. 91, no. 3, pp. 61–65, 2015. View at Publisher · View at Google Scholar · View at Scopus