Table of Contents
Journal of Biophysics
Volume 2013, Article ID 751091, 12 pages
http://dx.doi.org/10.1155/2013/751091
Research Article

Thermal Aggregation of Recombinant Protective Antigen: Aggregate Morphology and Growth Rate

1Department of Chemical and Biological Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK
2School of Chemical Engineering and Analytical Science and Manchester Interdisciplinary Biocentre, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK

Received 2 November 2012; Accepted 18 December 2012

Academic Editor: P. Bryant Chase

Copyright © 2013 Daniel J. Belton and Aline F. Miller. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. D. B. Clark, “Protein refolding for industrial processes,” Current Opinion in Biotechnology, vol. 12, no. 2, pp. 202–207, 2001. View at Publisher · View at Google Scholar · View at Scopus
  2. J. L. Cleland, M. F. Powell, and S. J. Shire, “The development of stable protein formulations: a close look at protein aggregation, deamidation, and oxidation,” Critical Reviews in Therapeutic Drug Carrier Systems, vol. 10, no. 4, pp. 307–377, 1993. View at Google Scholar · View at Scopus
  3. A. Braun, L. Kwee, M. A. Labow, and J. Alsenz, “Protein aggregates seem to play a key role among the parameters influencing the antigenicity of interferon alpha (IFN-α) in normal and transgenic mice,” Pharmaceutical Research, vol. 14, no. 10, pp. 1472–1478, 1997. View at Publisher · View at Google Scholar · View at Scopus
  4. W. Wang, “Instability, stabilization, and formulation of liquid protein pharmaceuticals,” International Journal of Pharmaceutics, vol. 185, no. 2, pp. 129–188, 1999. View at Publisher · View at Google Scholar · View at Scopus
  5. W. Wang, S. Nema, and D. Teagarden, “Protein aggregation—pathways and influencing factors,” International Journal of Pharmaceutics, vol. 390, no. 2, pp. 89–99, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. J. R. Clarkson, Z. F. Cui, and R. C. Darton, “Protein denaturation in foam: I. Mechanism study,” Journal of Colloid and Interface Science, vol. 215, no. 2, pp. 323–332, 1999. View at Publisher · View at Google Scholar · View at Scopus
  7. M. R. H. Krebs, G. L. Devlin, and A. M. Donald, “Protein particulates: another generic form of protein aggregation?” Biophysical Journal, vol. 92, no. 4, pp. 1336–1342, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. C. M. Dobson, “Protein folding and misfolding,” Nature, vol. 426, no. 6968, pp. 884–890, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. M. R. H. Krebs, K. R. Domike, and A. M. Donald, “Protein aggregation: more than just fibrils,” Biochemical Society Transactions, vol. 37, no. 4, pp. 682–686, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. W. S. Gosal and S. B. Ross-Murphy, “Globular protein gelation,” Current Opinion in Colloid and Interface Science, vol. 5, no. 3-4, pp. 188–194, 2000. View at Publisher · View at Google Scholar · View at Scopus
  11. A. M. Morris, M. A. Watzky, and R. G. Finke, “Protein aggregation kinetics, mechanism, and curve-fitting: a review of the literature,” Biochimica et Biophysica Acta, vol. 1794, no. 3, pp. 375–397, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. C. J. Roberts, “Nonnative protein aggregation: pathways, kinetics, and stability prediction,” in Misbehaving Proteins, R. M. Murphy and A. M. Tsai, Eds., pp. 17–46, Springer, New York, NY, USA, 2006. View at Google Scholar
  13. S. E. Bondos, “Methods for measuring protein aggregation,” Current Analytical Chemistry, vol. 2, no. 2, pp. 157–170, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. M. E. M. Cromwell, C. Felten, H. Flores, J. Liu, and S. J. Shire, “Self-association of therapeutic proteins: implications for product development,” in Misbehaving Proteins, R. M. Murphy and A. M. Tsai, Eds., pp. 313–330, Springer, New York, NY, USA, 2006. View at Google Scholar
  15. R. M. Murphy and C. C. Lee, “Laser light scattering as an indispensable tool for probing protein aggregation,” in Misbehaving Proteins, R. M. Murphy and A. M. Tsai, Eds., pp. 147–165, Springer, New York, NY, USA, 2006. View at Google Scholar
  16. S. Jendrek, S. F. Little, S. Hem, G. Mitra, and S. Giardina, “Evaluation of the compatibility of a second generation recombinant anthrax vaccine with aluminum-containing adjuvants,” Vaccine, vol. 21, no. 21-22, pp. 3011–3018, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. K. Chen, A. Kromin, M. P. Ulmer, B. W. Wessels, and V. Backman, “Nanoparticle sizing with a resolution beyond the diffraction limit using UV light scattering spectroscopy,” Optics Communications, vol. 228, no. 1–3, pp. 1–7, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. A. J. Cox, A. J. DeWeerd, and J. Linden, “An experiment to measure Mie and Rayleigh total scattering cross sections,” American Journal of Physics, vol. 70, no. 6, pp. 620–625, 2002. View at Publisher · View at Google Scholar · View at Scopus
  19. H. Fang, M. Ollero, E. Vitkin et al., “Noninvasive sizing of subcellular organelles with light scattering spectroscopy,” IEEE Journal on Selected Topics in Quantum Electronics, vol. 9, no. 2, pp. 267–276, 2003. View at Publisher · View at Google Scholar · View at Scopus
  20. J. R. Mourant, T. Fuselier, J. Boyer, T. M. Johnson, and I. J. Bigio, “Predictions and measurements of scattering and absorption over broad wavelength ranges in tissue phantoms,” Applied Optics, vol. 36, no. 4, pp. 949–957, 1997. View at Google Scholar · View at Scopus
  21. A. M. K. Nilsson, C. Sturesson, D. L. Liu, and S. Andersson-Engels, “Changes in spectral shape of tissue optical properties in conjunction with laser-induced thermotherapy,” Applied Optics, vol. 37, no. 7, pp. 1256–1267, 1998. View at Google Scholar · View at Scopus
  22. L. B. Scaffardi, N. Pellegri, O. De Sanctis, and J. O. Tocho, “Sizing gold nanoparticles by optical extinction spectroscopy,” Nanotechnology, vol. 16, no. 1, pp. 158–163, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. S. M. Scholz, R. Vacassy, J. Dutta, H. Hofmann, and M. Akinc, “Mie scattering effects from monodispersed ZnS nanospheres,” Journal of Applied Physics, vol. 83, no. 12, pp. 7860–7866, 1998. View at Google Scholar · View at Scopus
  24. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles, Wiley, New York, NY, USA, 1983.
  25. P. Schiebener, J. Straub, J. M. H. L. Sengers, and J. S. Gallagher, “Refractive index of water and steam as function of wavelength, temperature and density,” Journal of Physical and Chemical Reference Data, vol. 19, pp. 677–717, 1990. View at Google Scholar
  26. A. Weissberger, “Physical methods of organic chemistry—part 2,” in Techniques of Organic Chemistry, Wiley, New York, NY, USA, 1960. View at Google Scholar
  27. L. Willard, A. Ranjan, H. Zhang et al., “VADAR: a web server for quantitative evaluation of protein structure quality,” Nucleic Acids Research, vol. 31, no. 13, pp. 3316–3319, 2003. View at Publisher · View at Google Scholar · View at Scopus
  28. C. Petosa, R. J. Collier, K. R. Klimpel, S. H. Leppla, and R. C. Liddington, “Crystal structure of the anthrax toxin protective antigen,” Nature, vol. 385, no. 6619, pp. 833–838, 1997. View at Publisher · View at Google Scholar · View at Scopus
  29. H. M. Berman, J. Westbrook, Z. Feng et al., “The protein data bank,” Nucleic Acids Research, vol. 28, no. 1, pp. 235–242, 2000. View at Google Scholar · View at Scopus
  30. H. Fischer, I. Polikarpov, and A. F. Craievich, “Average protein density is a molecular-weight-dependent function,” Protein Science, vol. 13, no. 10, pp. 2825–2828, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. D. A. Chalton, I. F. Kelly, A. McGregor et al., “Unfolding transitions of Bacillus anthracis protective antigen,” Archives of Biochemistry and Biophysics, vol. 465, no. 1, pp. 1–10, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. P. Meakin, “Fractal aggregates,” Advances in Colloid and Interface Science, vol. 28, pp. 249–331, 1987. View at Google Scholar · View at Scopus
  33. C. J. Roberts, “Kinetics of irreversible protein aggregation: analysis of extended Lumry-Eyring models and implications for predicting protein shelf life,” Journal of Physical Chemistry B, vol. 107, no. 5, pp. 1194–1207, 2003. View at Publisher · View at Google Scholar · View at Scopus
  34. B. S. Kendrick, J. L. Cleland, X. Lam et al., “Aggregation of recombinant human interferon gamma: kinetics and structural transitions,” Journal of Pharmaceutical Sciences, vol. 87, no. 9, pp. 1069–1076, 1998. View at Publisher · View at Google Scholar · View at Scopus
  35. P. W. Atkins, Physical Chemistry, Oxford Unveristy Press, Oxford, UK, 2nd edition, 1982.
  36. R. L. Thommarson, “Alkyl radical disproportionation,” Journal of Physical Chemistry, vol. 74, no. 4, pp. 938–941, 1970. View at Google Scholar · View at Scopus
  37. R. Jaenicke, “Protein stability and protein folding,” in Ciba Foundation Symposium 161—Protein Conformation, D. J. Chadwick and K. Widdows, Eds., pp. 206–221, Wiley, Chichester, UK, 2007. View at Google Scholar
  38. G. Jiang, S. B. Joshi, L. J. Peek et al., “Anthrax vaccine powder formulations for nasal mucosal delivery,” Journal of Pharmaceutical Sciences, vol. 95, no. 1, pp. 80–96, 2006. View at Publisher · View at Google Scholar · View at Scopus