Table of Contents Author Guidelines Submit a Manuscript
Journal of Combustion
Volume 2012, Article ID 786920, 7 pages
Research Article

Relationship between Particle Size Distribution of Low-Rank Pulverized Coal and Power Plant Performance

Department of Mining and Geological Engineering, University of Alaska Fairbanks, P.O. Box 755800, Fairbanks, AK 99775, USA

Received 25 July 2011; Revised 4 December 2011; Accepted 5 February 2012

Academic Editor: Kalyan Annamalai

Copyright © 2012 Rajive Ganguli and Sukumar Bandopadhyay. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


The impact of particle size distribution (PSD) of pulverized, low rank high volatile content Alaska coal on combustion related power plant performance was studied in a series of field scale tests. Performance was gauged through efficiency (ratio of megawatt generated to energy consumed as coal), emissions (SO2, NOx, CO), and carbon content of ash (fly ash and bottom ash). The study revealed that the tested coal could be burned at a grind as coarse as 50% passing 76 microns, with no deleterious impact on power generation and emissions. The PSD’s tested in this study were in the range of 41 to 81 percent passing 76 microns. There was negligible correlation between PSD and the followings factors: efficiency, SO2, NOx, and CO. Additionally, two tests where stack mercury (Hg) data was collected, did not demonstrate any real difference in Hg emissions with PSD. The results from the field tests positively impacts pulverized coal power plants that burn low rank high volatile content coals (such as Powder River Basin coal). These plants can potentially reduce in-plant load by grinding the coal less (without impacting plant performance on emissions and efficiency) and thereby, increasing their marketability.