Table of Contents Author Guidelines Submit a Manuscript
Journal of Combustion
Volume 2013, Article ID 134234, 14 pages
http://dx.doi.org/10.1155/2013/134234
Research Article

FT-IR Investigation of the Structural Changes of Sulcis and South Africa Coals under Progressive Heating in Vacuum: Correlation with Volatile Matter

Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Risorgimento 35, 56126 Pisa, Italy

Received 30 January 2013; Revised 27 May 2013; Accepted 31 May 2013

Academic Editor: Peter F. Nelson

Copyright © 2013 Aldo D'Alessio et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. Miura, “Mild conversion of coal for producing valuable chemicals,” Fuel Processing Technology, vol. 62, no. 2, pp. 119–135, 2000. View at Publisher · View at Google Scholar · View at Scopus
  2. B. Avid, B. Purevsuren, M. Born, J. Dugarjav, Y. Davaajav, and A. Tuvshinjargal, “Pyrolysis and TG analysis of Shivee Ovoo coal from Mongolia,” Journal of Thermal Analysis and Calorimetry, vol. 68, no. 3, pp. 877–885, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. J. W. Patrick, A. Walker, and S. Hanson, “The effect of coal particle size on pyrolysis and steam gasification,” Fuel, vol. 81, no. 5, pp. 531–537, 2002. View at Publisher · View at Google Scholar · View at Scopus
  4. L. Yang, J. Ran, and L. Zhang, “Mechanism and kinetics of pyrolysis of coal with high ash and low fixed carbon contents,” Journal of Energy Resources Technology, vol. 133, no. 3, Article ID 031701, pp. 1–7, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. R. W. Niemeier, “Petroleum, coal tar, and related products,” in Patty's Toxicology, pp. 325–370, John Wiley & Sons, New York, NY, USA, 2012. View at Google Scholar
  6. L. S. Pedersen, H. P. Nielsen, S. Kiil et al., “Full-scale co-firing of straw and coal,” Fuel, vol. 75, no. 13, pp. 1584–1590, 1996. View at Publisher · View at Google Scholar · View at Scopus
  7. C. Meesri and B. Moghtaderi, “Lack of synergetic effects in the pyrolytic characteristics of woody biomass/coal blends under low and high heating rate regimes,” Biomass and Bioenergy, vol. 23, no. 1, pp. 55–66, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. H. Haykiri-Acma and S. Yaman, “Interaction between biomass and different rank coals during co-pyrolysis,” Renewable Energy, vol. 35, no. 1, pp. 288–292, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. C. A. Ulloa, A. L. Gordon, and X. A. García, “Thermogravimetric study of interactions in the pyrolysis of blends of coal with radiata pine sawdust,” Fuel Processing Technology, vol. 90, no. 4, pp. 583–590, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. C.-Z. Li, K. D. Bartle, and R. Kandiyoti, “Vacuum pyrolysis of maceral concentrates in a wire-mesh reactor,” Fuel, vol. 72, no. 11, pp. 1459–1468, 1993. View at Google Scholar · View at Scopus
  11. L. Zhang, S. Xu, W. Zhao, and S. Liu, “Co-pyrolysis of biomass and coal in a free fall reactor,” Fuel, vol. 86, no. 3, pp. 353–359, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. D.-M. He, L. Zhang, J. Guan, and Q. M. Zhang, “The comparative study of Honghe lignite pyrolysis under the atmosphere of methanol and nitrogen,” Advanced Materials Research, vol. 512–515, pp. 1784–1789, 2012. View at Publisher · View at Google Scholar
  13. D. M. P. Wu and D. P. Harrison, “Volatile products from lignite pyrolysis and hydropyrolysis,” Fuel, vol. 65, no. 6, pp. 747–751, 1986. View at Google Scholar · View at Scopus
  14. J. B. Howard, “Fundamentals of coal pyrolysis and hydropyrolysis,” in Chemistry of Coal Utilization Secondary Supplementary Volume, pp. 665–784, John Wiley & Sons, New York, NY, USA, 1981. View at Google Scholar
  15. N. Qiu, H. Li, E. Xu, J. Qin, and L. Zheng, “Temperature and time effects on free radical concentration in organic matter: evidence from laboratory pyrolysis experimental and geological samples,” Energy Exploration and Exploitation, vol. 30, no. 2, pp. 311–330, 2012. View at Publisher · View at Google Scholar · View at Scopus
  16. R. D. Srivastava, H. G. Mcllvried III, and J. C. Winslow, “Coal technology for power, liquid fuels, and chemicals,” in Kent and Riegel's Handbook of Industrial Chemistry and Biotechnology, chapter 19, pp. 843–906, Springer Science + Business Media, New York, NY, USA, 11th edition, 2007. View at Google Scholar
  17. J. Rezaiyan and N. P. Cheremisinoff, “Pyrolysis,” in Gasification Technologies: A Primer for Engineers and Scientists, pp. 145–164, CRC, New York, NY, USA; Taylor & Francis, Boca Raton, Fla, USA, 2005. View at Google Scholar
  18. L. Tognotti, G. Bertozzi, L. Petarca, A. D'Alessio, and E. Benedetti, “Low-temperature oxidation of a bituminous coal: its structural implications,” La Chimica e L'Industria, vol. 70, no. 9, pp. 76–80, 1988. View at Google Scholar
  19. L. Tognotti, L. Petarca, A. D'Alessio, and E. Benedetti, “Low temperature air oxidation of coal and its pyridine extraction products. Fourier transform infrared studies,” Fuel, vol. 70, no. 9, pp. 1059–1067, 1991. View at Google Scholar · View at Scopus
  20. A. D'Alessio and E. Benedetti, “Infrared analysis of the structural changes of Sulcis and other coals under progressive heating,” La Chimica e L'Industria, vol. 66, pp. 689–693, 1984. View at Google Scholar
  21. A. Karcz and S. Porada, “The influence of coal rank on formation of gaseous hydrocarbons in hydrogasif ication of coal,” Fuel, vol. 75, no. 5, pp. 641–645, 1996. View at Publisher · View at Google Scholar · View at Scopus
  22. K. Murakami, H. Shirato, and Y. Nishiyama, “In situ infrared spectroscopic study of the effects of exchanged cations on thermal decomposition of a brown coal,” Fuel, vol. 76, no. 7, pp. 655–661, 1997. View at Google Scholar · View at Scopus
  23. B. J. Meldrum and C. H. Rochester, “Infrared spectra of carbonaceous chars under carbonization and oxidation conditions,” Fuel, vol. 70, no. 1, pp. 57–63, 1991. View at Google Scholar · View at Scopus
  24. J. B. Ibarra, R. Moliner, and A. J. Bonet, “FT-i.r. investigation on char formation during the early stages of coal pyrolysis,” Fuel, vol. 73, no. 6, pp. 918–924, 1994. View at Google Scholar · View at Scopus
  25. P. Keliang, X. Wenguo, and Z. Changsui, “Investigation on pyrolysis characteristic of natural coke using thermogravimetric and Fourier-transform infrared method,” Journal of Analytical and Applied Pyrolysis, vol. 80, no. 1, pp. 77–84, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. S. S. Idris, N. A. Rahman, K. Ismail, A. B. Alias, Z. A. Rashid, and M. J. Aris, “Investigation on thermochemical behaviour of low rank Malaysian coal, oil palm biomass and their blends during pyrolysis via thermogravimetric analysis (TGA),” Bioresource Technology, vol. 101, no. 12, pp. 4584–4592, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. R. M. Carangelo, P. R. Solomon, and D. J. Gerson, “Application of TG-FT-IR to study hydrocarbon structure and kinetics,” Fuel, vol. 66, no. 7, pp. 960–967, 1987. View at Google Scholar · View at Scopus
  28. P. R. Solomon, M. A. Serio, and E. M. Suuberg, “Coal pyrolysis: experiments, kinetic rates and mechanisms,” Progress in Energy and Combustion Science, vol. 18, no. 2, pp. 133–220, 1992. View at Google Scholar · View at Scopus
  29. I. Pitkänen, J. Huttunen, H. Halttunen, and R. Vesterinen, “Evolved gas analysis of some solid fuels by TG-FTIR,” Journal of Thermal Analysis and Calorimetry, vol. 56, no. 3, pp. 1253–1259, 1999. View at Google Scholar · View at Scopus
  30. E. Ekinci, F. Yardim, M. Razvigorova et al., “Characterization of liquid products from pyrolysis of subbituminous coals,” Fuel Processing Technology, vol. 77-78, pp. 309–315, 2002. View at Publisher · View at Google Scholar · View at Scopus
  31. L. Bonfanti, L. Comellas, J. L. Lliberia, R. Vallhonrat-Matalonga, M. Pich-Santacana, and D. López-Piñol, “Pyrolysis gas chromatography of some coals by nitrogen and phosphorus, flame ionisation and mass spectrometer detectors,” Journal of Analytical and Applied Pyrolysis, vol. 44, no. 1, pp. 101–119, 1997. View at Google Scholar · View at Scopus
  32. D. Fabbri, I. Vassura, and C. E. Snape, “Simple off-line flash pyrolysis procedure with in situ silylation for the analysis of hydroxybenzenes in humic acids and coals,” Journal of Chromatography A, vol. 967, no. 2, pp. 235–242, 2002. View at Publisher · View at Google Scholar · View at Scopus
  33. G. Gryglewicz, P. Rutkowski, and J. Yperman, “Characterization of sulfur compounds in supercritical coal extracts by gas chromatography-mass spectrometry,” Fuel Processing Technology, vol. 77-78, pp. 167–172, 2002. View at Publisher · View at Google Scholar · View at Scopus
  34. Q. yang, S. Wu, R. Lou, and G. Lv, “Analysis of wheat straw lignin by thermogravimetry and pyrolysis-gas chromatography/mass spectrometry,” Journal of Analytical and Applied Pyrolysis, vol. 87, no. 1, pp. 65–69, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. A. D'Alessio, P. Vergamini, and E. Benedetti, “FT-IR investigation of the structural changes of Sulcis and South Africa coals under progressive heating in vacuum,” Fuel, vol. 79, no. 10, pp. 1215–1220, 2000. View at Publisher · View at Google Scholar · View at Scopus
  36. R. H. Perry and C. H. Chilton, Chemical Engineers Handbook, Mc Graw-Hill, New York, NY, USA, 8th edition, 2007.
  37. D. N. Kendall, Applied Infrared Spectroscopy, Reinhold, New York, NY, USA, 1966.
  38. M. V. Zeller, Infrared Methods in Air Analysis, Perkin-Elmer Corporation, Eden Prairie, Minn, USA, 2000.
  39. E. B. Ledesma, C. Li, P. F. Nelson, and J. C. Mackie, “Release of HCN, NH3, and HNCO from the thermal gas-phase cracking of coal pyrolysis tars,” Energy and Fuels, vol. 12, no. 3, pp. 536–541, 1998. View at Google Scholar · View at Scopus
  40. L. L. Tan and C. Li, “Formation of NOx and SOx precursors during the pyrolysis of coal and biomass. Part I. Effects of reactor configuration on the determined yields of HCN and NH3 during pyrolysis,” Fuel, vol. 79, no. 15, pp. 1883–1889, 2000. View at Publisher · View at Google Scholar · View at Scopus
  41. R. Bassilakis, Y. Zhao, P. R. Solomon, and M. A. Serio, “Sulfur and nitrogen evolution in the Argonne coals: experiment and modeling,” Energy & Fuels, vol. 7, no. 6, pp. 710–720, 1993. View at Google Scholar · View at Scopus
  42. T. Maffei, S. Sommariva, E. Ranzi, and T. Faravelli, “A predictive kinetic model of sulfur release from coal,” Fuel, vol. 91, no. 1, pp. 213–223, 2012. View at Publisher · View at Google Scholar · View at Scopus
  43. J. Yan, J. Yang, and Z. Liu, “SH radical: the key intermediate in sulfur transformation during thermal processing of coal,” Environmental Science and Technology, vol. 39, no. 13, pp. 5043–5051, 2005. View at Publisher · View at Google Scholar · View at Scopus
  44. K. Miura, K. Mae, M. Shimada, and H. Minami, “Analysis of formation rates of sulphur-containing gases during the pyrolysis of various coals,” Energy and Fuels, vol. 15, no. 3, pp. 629–636, 2001. View at Publisher · View at Google Scholar · View at Scopus
  45. P. Selsbo, P. Almén, and I. Ericsson, “Quantitative analysis of sulfur in coal by pyrolysis-gas chromatography and multivariate data analysis,” Energy and Fuels, vol. 10, no. 3, pp. 751–756, 1996. View at Google Scholar · View at Scopus
  46. L. Duan, C. Zhao, W. Zhou, C. Liang, and X. Chen, “Sulfur evolution from coal combustion in O2/CO2 mixture,” Journal of Analytical and Applied Pyrolysis, vol. 86, no. 2, pp. 269–273, 2009. View at Publisher · View at Google Scholar · View at Scopus
  47. G. L. Hu, K. Dam, S. Wedel, and J. P. Hansen, “Decomposition and oxidation of pyrite,” Progress in Energy and Combustion Science, vol. 32, no. 3, pp. 295–314, 2006. View at Publisher · View at Google Scholar · View at Scopus
  48. P. J. Cleyle, W. F. Caley, L. Stewart, and S. G. whiteway, “Decomposition of pyrite and trapping of sulphur in a coal matrix during pyrolysis of coal,” Fuel, vol. 63, no. 11, pp. 1579–1582, 1984. View at Google Scholar · View at Scopus
  49. M. R. Khan and T. Kurata, “The feasibility of mild gasification of coal: research needs,” 1985, DOE/METC-85/4019, NTIS/DE85013625. View at Google Scholar
  50. S. Furfari and R. Cyprès, “Hydropyrolysis of a high-sulphur-high-calcite Italian Sulcis coal. 2. Importance of the mineral matter on the sulphur behaviour,” Fuel, vol. 61, no. 5, pp. 453–459, 1982. View at Google Scholar · View at Scopus
  51. D. Shao, E. J. Hutchinson, J. Heidbrink, W. Pan, and C. Chou, “Behavior of sulfur during coal pyrolysis,” Journal of Analytical and Applied Pyrolysis, vol. 30, no. 1, pp. 91–100, 1994. View at Google Scholar · View at Scopus
  52. J. J. Pitt, “Structure analysis of coal,” in Coal and Modern Coal processIng: An Introduction, pp. 27–50, Academic Press, London, UK, 1979. View at Google Scholar
  53. C. Poucher, The Aldrich Library of FT-IR Spectra, John Wiley & Sons, New York, NY, USA, 1997.
  54. V. S. Nguyen, H. L. Abbott, M. M. Dawley, T. M. Orlando, J. Leszczynski, and M. T. Nguyen, “Theoretical study of formamide decomposition pathways,” Journal of Physical Chemistry A, vol. 115, no. 5, pp. 841–851, 2011. View at Publisher · View at Google Scholar · View at Scopus