Table of Contents Author Guidelines Submit a Manuscript
Journal of Combustion
Volume 2015 (2015), Article ID 943568, 9 pages
Research Article

A Reduced Order Model for the Design of Oxy-Coal Combustion Systems

West Virginia University, Morgantown, WV 26505, USA

Received 2 July 2015; Accepted 7 October 2015

Academic Editor: Satyanarayanan R. Chakravarthy

Copyright © 2015 Steven L. Rowan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Oxy-coal combustion is one of the more promising technologies currently under development for addressing the issues associated with greenhouse gas emissions from coal-fired power plants. Oxy-coal combustion involves combusting the coal fuel in mixtures of pure oxygen and recycled flue gas (RFG) consisting of mainly carbon dioxide (CO2). As a consequence, many researchers and power plant designers have turned to CFD simulations for the study and design of new oxy-coal combustion power plants, as well as refitting existing air-coal combustion facilities to oxy-coal combustion operations. While CFD is a powerful tool that can provide a vast amount of information, the simulations themselves can be quite expensive in terms of computational resources and time investment. As a remedy, a reduced order model (ROM) for oxy-coal combustion has been developed to supplement the CFD simulations. With this model, it is possible to quickly estimate the average outlet temperature of combustion flue gases given a known set of mass flow rates of fuel and oxidant entering the power plant boiler as well as determine the required reactor inlet mass flow rates for a desired outlet temperature. Several cases have been examined with this model. The results compare quite favorably to full CFD simulation results.