Table of Contents Author Guidelines Submit a Manuscript
Journal of Cancer Epidemiology
Volume 2013, Article ID 965212, 10 pages
http://dx.doi.org/10.1155/2013/965212
Review Article

Worldwide Increasing Incidence of Thyroid Cancer: Update on Epidemiology and Risk Factors

1Endocrinology, Garibaldi-Nesima Hospital, Via Palermo, 636, 95122 Catania, Italy
2Endocrinology, Department of Clinical and Molecular Biomedicine, University of Catania, Garibaldi-Nesima Hospital, Via Palermo 636, 95122 Catania, Italy
3Endocrinology, Garibaldi-Nesima Hospital, and Humanitas, Catania Cancer Center, Catania, Italy

Received 27 February 2013; Accepted 15 April 2013

Academic Editor: Thomas E. Rohan

Copyright © 2013 Gabriella Pellegriti et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. P. Curado, B. Edwards, H. R. Shin et al., Cancer Incidence in Five Continents, vol. 9 of IARC Scientific Publications, No. 160, IARC, Lyon, France, 2007.
  2. B. A. Kilfoy, T. Zheng, T. R. Holford et al., “International patterns and trends in thyroid cancer incidence, 1973–2002,” Cancer Causes and Control, vol. 20, no. 5, pp. 525–531, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. A. Jemal, R. Siegel, J. Xu, and E. Ward, “Cancer statistics, 2010,” CA: A Cancer Journal for Clinicians, vol. 60, no. 5, pp. 277–300, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. L. dal Maso, M. Lise, P. Zambon et al., “Incidence of thyroid cancer in Italy, 1991–2005: time trends and age-period-cohort effects,” Annals of Oncology, vol. 22, no. 4, pp. 957–963, 2011. View at Publisher · View at Google Scholar
  5. B. Aschebrook-Kilfoy, E. L. Kaplan, B. C. Chiu, P. Angelos, and R. H. Grogan, “The acceleration in papillary thyroid cancer incidence rates is similar among racial and ethnic groups in the United States,” Annals of Surgical Oncology, 2013. View at Publisher · View at Google Scholar
  6. L. Enewold, K. Zhu, E. Ron et al., “Rising thyroid cancer incidence in the United States by demographic and tumor characteristics, 1980–2005,” Cancer Epidemiology Biomarkers and Prevention, vol. 18, no. 3, pp. 784–791, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. W. D. T. Kent, S. F. Hall, P. A. Isotalo, R. L. Houlden, R. L. George, and P. A. Groome, “Increased incidence of differentiated thyroid carcinoma and detection of subclinical disease,” Canadian Medical Association Journal, vol. 177, no. 11, pp. 1357–1361, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. L. Davies and H. G. Welch, “Increasing incidence of thyroid cancer in the United States, 1973–2002,” Journal of the American Medical Association, vol. 295, no. 18, pp. 2164–2167, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Grodski, T. Brown, S. Sidhu et al., “Increasing incidence of thyroid cancer is due to increased pathologic detection,” Surgery, vol. 144, no. 6, pp. 1038–1043, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Rego-Iraeta, L. F. Pérez-Méndez, B. Mantinan, and R. V. Garcia-Mayor, “Time trends for thyroid cancer in northwestern spain: true rise in the incidence of micro and larger forms of papillary thyroid carcinoma,” Thyroid, vol. 19, no. 4, pp. 333–340, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. E. P. Simard, E. M. Ward, R. Siegel, and A. Jemal, “Cancers with increasing incidence trends in the United States: 1999 through 2008,” CA: A Cancer Journal For Clinicians, vol. 62, no. 2, pp. 118–128, 2012. View at Publisher · View at Google Scholar
  12. A. Y. Chen, A. Jemal, and E. M. Ward, “Increasing incidence of differentiated thyroid cancer in the United States, 1988–2005,” Cancer, vol. 115, no. 16, pp. 3801–3807, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. B. Aschebrook-Kilfoy, M. H. Ward, M. M. Sabra, and S. S. Devesa, “Thyroid cancer incidence patterns in the United States by histologic type, 1992–2006,” Thyroid, vol. 21, no. 2, pp. 125–134, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. H. G. Welch and P. C. Albertsen, “Prostate cancer diagnosis and treatment after the introduction of prostate-specific antigen screening: 1986–2005,” Journal of the National Cancer Institute, vol. 101, no. 19, pp. 1325–1329, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Schlumberger, I. Borget, C. Nascimento, M. Brassard, and S. Leboulleux, “Treatment and follow-up of low-risk patients with thyroid cancer,” Nature Reviews Endocrinology, vol. 7, no. 10, pp. 625–628, 2011. View at Publisher · View at Google Scholar
  16. Y. Ito and A. Miyauchi, “Is surgery necessary for papillary thyroid microcarcinomas?” Nature Reviews Endocrinology, vol. 8, no. 1, p. 9, 2012. View at Google Scholar
  17. E. K. Alexander and P. R. Larsen, “Radioiodine for thyroid cancer—is less more?” The New England Journal of Medicine, vol. 366, no. 18, pp. 1732–1733, 2012. View at Publisher · View at Google Scholar
  18. M. Schlumberger, B. Catargi, I. Borget et al., “Strategies of radioiodine ablation in patients with low-risk thyroid cancer,” The New England Journal of Medicine, vol. 366, no. 18, pp. 1663–1673, 2012. View at Google Scholar
  19. G. Pellegriti, C. Scollo, G. Lumera, C. Regalbuto, R. Vigneri, and A. Belfiore, “Clinical behavior and outcome of papillary thyroid cancers smaller than 1.5 cm in diameter: study of 299 cases,” Journal of Clinical Endocrinology and Metabolism, vol. 89, no. 8, pp. 3713–3720, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. B. Aschebrook-Kilfoy, R. Grogan, M. Ward, E. Kaplan, and S. Devesa, “Follicular thyroid cancer incidence patterns in the United States, 1980–2009,” Thyroid, 2013. View at Publisher · View at Google Scholar
  21. E. L. Mazzaferri, “Management of a solitary thyroid nodule,” The New England Journal of Medicine, vol. 328, no. 8, pp. 553–559, 1993. View at Publisher · View at Google Scholar · View at Scopus
  22. I. L. Nilsson, F. Arnberg, J. Zedenius, and A. Sundin, “Thyroid incidentaloma detected by fluorodeoxyglucose positron emission tomography/computed tomography: practical management algorithm,” World Journal of Surgery, vol. 35, no. 12, pp. 2691–2697, 2011. View at Publisher · View at Google Scholar
  23. M. Yun, T. W. Noh, A. Cho et al., “Visually discernible [18F]fluorodeoxyglucose uptake in papillary thyroid microcarcinoma: a potential new risk factor,” Journal of Clinical Endocrinology and Metabolism, vol. 95, no. 7, pp. 3182–3188, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. B. L. Sprague, S. Warren Andersen, and A. Trentham-Dietz, “Thyroid cancer incidence and socioeconomic indicators of health care access,” Cancer Causes and Control, vol. 19, no. 6, pp. 585–593, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. H. R. Harach, K. O. Franssila, and V. M. Wasenius, “Occult papillary carcinoma of the thyroid. A “normal” finding in Finland. A systematic autopsy study,” Cancer, vol. 56, no. 3, pp. 531–538, 1985. View at Google Scholar · View at Scopus
  26. E. L. Mazzaferri, “Managing thyroid microcarcinomas,” Yonsei Medical Journal, vol. 53, no. 1, pp. 1–14, 2012. View at Publisher · View at Google Scholar
  27. F. A. Haggar, D. B. Preen, G. Pereira, C. D. Holman, and K. Einarsdottir, “Cancer incidence and mortality trends in Australian adolescents and young adults, 1982–2007,” BMC Cancer, vol. 12, no. 1, p. 151, 2012. View at Publisher · View at Google Scholar
  28. S. Liu, R. Semenciw, A. M. Ugnat, and Y. Mao, “Increasing thyroid cancer incidence in Canada, 1970–1996: time trends and age-period-cohort effects,” British Journal of Cancer, vol. 85, no. 9, pp. 1335–1339, 2001. View at Publisher · View at Google Scholar · View at Scopus
  29. L. F. Ellison and K. Wilkins, “Canadian trends in cancer prevalence,” Health Reports, vol. 23, no. 1, pp. 7–16, 2012. View at Google Scholar
  30. Y. Wang and W. Wang, “Increasing incidence of thyroid cancer in shanghai, China, 1983–2007,” Asia-Pacific Journal of Public Health, 2012. View at Publisher · View at Google Scholar
  31. M. Colonna, A. V. Guizard, C. Schvartz et al., “A time trend analysis of papillary and follicular cancers as a function of tumour size: a study of data from six cancer registries in France (1983–2000),” European Journal of Cancer, vol. 43, no. 5, pp. 891–900, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. A. Mathur, W. Moses, R. Rahbari et al., “Higher rate of BRAF mutation in papillary thyroid cancer over time: a single-institution study,” Cancer, vol. 117, no. 19, pp. 4390–4395, 2011. View at Publisher · View at Google Scholar
  33. C. Romei, L. Fugazzola, E. Puxeddu et al., “Modifications in the papillary thyroid cancer gene profile over the last 15 years,” The Journal of Clinical Endocrinology & Metabolism, vol. 97, no. 9, pp. E1758–E1765, 2012. View at Google Scholar
  34. C. Zhu, T. Zheng, B. A. Kilfoy et al., “A birth cohort analysis of the incidence of papillary thyroid cancer in the united states, 1973–2004,” Thyroid, vol. 19, no. 10, pp. 1061–1066, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. F. A. Mettler Jr., M. Bhargavan, B. R. Thomadsen et al., “Nuclear Medicine Exposure in the United States, 2005–2007: preliminary results,” Seminars in Nuclear Medicine, vol. 38, no. 5, pp. 384–391, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. F. A. Mettler Jr., P. W. Wiest, J. A. Locken, and C. A. Kelsey, “CT scanning: patterns of use and dose,” Journal of Radiological Protection, vol. 20, no. 4, pp. 353–359, 2000. View at Publisher · View at Google Scholar · View at Scopus
  37. O. W. Linton and F. A. Mettler, “National conference on dose reduction in CT, with an emphasis on pediatric patients,” American Journal of Roentgenology, vol. 181, no. 2, pp. 321–329, 2003. View at Google Scholar · View at Scopus
  38. S. R. Baker and W. A. Bhatti, “The thyroid cancer epidemic: is it the dark side of the CT revolution?” European Journal of Radiology, vol. 60, no. 1, pp. 67–69, 2006. View at Publisher · View at Google Scholar · View at Scopus
  39. D. Williams, “Radiation carcinogenesis: lessons from Chernobyl,” Oncogene, vol. 27, supplement 2, pp. S9–S18, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. M. S. Pearce, J. A. Salotti, M. P. Little et al., “Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study,” The Lancet, vol. 380, no. 9840, pp. 499–4505, 2012. View at Publisher · View at Google Scholar
  41. M. Mazonakis, A. Tzedakis, J. Damilakis, and N. Gourtsoyiannis, “Thyroid dose from common head and neck CT examinations in children: is there an excess risk for thyroid cancer induction?” European Radiology, vol. 17, no. 5, pp. 1352–1357, 2007. View at Publisher · View at Google Scholar · View at Scopus
  42. A. Berrington de González, M. Mahesh, K. P. Kim et al., “Projected cancer risks from computed tomographic scans performed in the United States in 2007,” Archives of Internal Medicine, vol. 169, no. 22, pp. 2071–2077, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. E. Ron, J. H. Lubin, R. E. Shore et al., “Thyroid cancer after exposure to external radiation: a pooled analysis of seven studies,” Radiation Research, vol. 141, no. 3, pp. 259–277, 1995. View at Publisher · View at Google Scholar · View at Scopus
  44. D. B. Richardson, “Exposure to ionizing radiation in adulthood and thyroid cancer incidence,” Epidemiology, vol. 20, no. 2, pp. 181–187, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. A. Memon, S. Godward, D. Williams, I. Siddique, and K. Al-Saleh, “Dental x-rays and the risk of thyroid cancer: a case-control study,” Acta Oncologica, vol. 49, no. 4, pp. 447–453, 2010. View at Publisher · View at Google Scholar · View at Scopus
  46. E. Ron, “Cancer risks from medical radiation,” Health Physics, vol. 85, no. 1, pp. 47–59, 2003. View at Publisher · View at Google Scholar · View at Scopus
  47. J. A. Franklyn, P. Maisonneuve, M. C. Sheppard, J. Betteridge, and P. Boyle, “Mortality after the treatment of hyperthyroidism with radioactive iodine,” The New England Journal of Medicine, vol. 338, no. 11, pp. 712–718, 1998. View at Publisher · View at Google Scholar · View at Scopus
  48. S. Metso, A. Auvinen, H. Huhtala, J. Salmi, H. Oksala, and P. Jaatinen, “Increased cancer incidence after radioiodine treatment for hyperthyroidism,” Cancer, vol. 109, no. 10, pp. 1972–1979, 2007. View at Publisher · View at Google Scholar · View at Scopus
  49. T. T. Hieu, A. W. Russell, R. Cuneo et al., “Cancer risk after medical exposure to radioactive iodine in benign thyroid diseases: a meta-analysis,” Endocrine-Related Cancer, vol. 19, no. 5, pp. 645–655, 2012. View at Publisher · View at Google Scholar
  50. P. Black, A. Straaten, and P. Gutjahr, “Secondary thyroid carcinoma after treatment for childhood cancer,” Medical and Pediatric Oncology, vol. 31, no. 2, pp. 91–95, 1998. View at Google Scholar
  51. L. dal Maso, C. Bosetti, C. la Vecchia, and S. Franceschi, “Risk factors for thyroid cancer: an epidemiological review focused on nutritional factors,” Cancer Causes and Control, vol. 20, no. 1, pp. 75–86, 2009. View at Publisher · View at Google Scholar · View at Scopus
  52. G. Pellegriti, F. de Vathaire, C. Scollo et al., “Papillary thyroid cancer incidence in the volcanic area of sicily,” Journal of the National Cancer Institute, vol. 101, no. 22, pp. 1575–1583, 2009. View at Publisher · View at Google Scholar · View at Scopus
  53. U. Feldt-Rasmussen, “Iodine and cancer,” Thyroid, vol. 11, no. 5, pp. 483–486, 2001. View at Google Scholar · View at Scopus
  54. B. Dijkstra, R. S. Prichard, A. Lee et al., “Changing patterns of thyroid carcinoma,” Irish Journal of Medical Science, vol. 176, no. 2, pp. 87–90, 2007. View at Publisher · View at Google Scholar · View at Scopus
  55. H. R. Harach, D. A. Escalante, and A. Onativia, “Thyroid carcinoma and thyroiditis in an endemic goitre region before and after iodine prophylaxis,” Acta Endocrinologica, vol. 108, no. 1, pp. 55–60, 1985. View at Google Scholar · View at Scopus
  56. H. Guan, M. Ji, R. Bao et al., “Association of high iodine intake with the T1799A BRAF mutation in papillary thyroid cancer,” Journal of Clinical Endocrinology and Metabolism, vol. 94, no. 5, pp. 1612–1617, 2009. View at Publisher · View at Google Scholar · View at Scopus
  57. E. L. Mazzaferri, “Papillary and follicular thyroid cancer: selective therapy,” Comprehensive Therapy, vol. 7, no. 5, pp. 6–14, 1981. View at Google Scholar · View at Scopus
  58. M. R. Haymart, D. J. Repplinger, G. E. Leverson et al., “Higher serum thyroid stimulating hormone level in thyroid nodule patients is associated with greater risks of differentiated thyroid cancer and advanced tumor stage,” Journal of Clinical Endocrinology and Metabolism, vol. 93, no. 3, pp. 809–814, 2008. View at Publisher · View at Google Scholar · View at Scopus
  59. E. Fiore, T. Rago, M. A. Provenzale et al., “Lower levels of TSH are associated with a lower risk of papillary thyroid cancer in patients with thyroid nodular disease: thyroid autonomy may play a protective role,” Endocrine-Related Cancer, vol. 16, no. 4, pp. 1251–1260, 2009. View at Publisher · View at Google Scholar · View at Scopus
  60. E. Fiore, T. Rago, M. A. Provenzale et al., “L-thyroxine-treated patients with nodular goiter have lower serum TSH and lower frequency of papillary thyroid cancer: results of a cross-sectional study on 27 914 patients,” Endocrine-Related Cancer, vol. 17, no. 1, pp. 231–239, 2010. View at Publisher · View at Google Scholar · View at Scopus
  61. D. Repplinger, A. Bargren, Y. W. Zhang, J. T. Adler, M. Haymart, and H. Chen, “Is hashimoto's thyroiditis a risk factor for papillary thyroid cancer?” Journal of Surgical Research, vol. 150, no. 1, pp. 49–52, 2008. View at Publisher · View at Google Scholar · View at Scopus
  62. M. Khatami, “Inflammation, aging, and cancer: tumoricidal versus tumorigenesis of immunity,” Cell Biochemistry and Biophysics, vol. 55, no. 2, pp. 55–79, 2009. View at Publisher · View at Google Scholar · View at Scopus
  63. L. Hegedus, “Clinical practice. The thyroid nodule,” The New England Journal of Medicine, vol. 351, no. 17, pp. 1764–1771, 2004. View at Publisher · View at Google Scholar
  64. E. Marqusee, C. B. Benson, M. C. Frates et al., “Usefulness of ultrasonography in the management of nodular thyroid disease,” Annals of Internal Medicine, vol. 133, no. 9, pp. 696–700, 2000. View at Google Scholar · View at Scopus
  65. D. S. Cooper, G. M. Doherty, B. R. Haugen et al., “Revised American thyroid association management guidelines for patients with thyroid nodules and differentiated thyroid cancer,” Thyroid, vol. 19, no. 11, pp. 1167–1214, 2009. View at Publisher · View at Google Scholar · View at Scopus
  66. E. Papini, R. Guglielmi, A. Bianchini et al., “Risk of malignancy in nonpalpable thyroid nodules: predictive value of ultrasound and color-doppler features,” Journal of Clinical Endocrinology and Metabolism, vol. 87, no. 5, pp. 1941–1946, 2002. View at Publisher · View at Google Scholar · View at Scopus
  67. M. C. Frates, C. B. Benson, P. M. Doubilet et al., “Prevalence and distribution of carcinoma in patients with solitary and multiple thyroid nodules on sonography,” Journal of Clinical Endocrinology and Metabolism, vol. 91, no. 9, pp. 3411–3417, 2006. View at Publisher · View at Google Scholar · View at Scopus
  68. V. Mathai, J. Idikula, A. S. Fenn, and A. Nair, “Do long-standing nodular goitres result in malignancies?” Australian and New Zealand Journal of Surgery, vol. 64, no. 3, pp. 180–182, 1994. View at Google Scholar · View at Scopus
  69. Y. Erbil, U. Barbaros, A. Salmaslioǧlu et al., “Effect of thyroid gland volume in preoperative detection of suspected malignant thyroid nodules in a multinodular goiter,” Archives of Surgery, vol. 143, no. 6, pp. 558–563, 2008. View at Publisher · View at Google Scholar · View at Scopus
  70. J. P. Brito, A. J. Yarur, L. J. Prokop, B. McIver, M. H. Murad, and V. M. Montori, “Prevalence of thyroid cancer in multinodular goiter versus single nodule: a systematic review and meta-analysis,” Thyroid, vol. 23, no. 4, pp. 449–455, 2013. View at Publisher · View at Google Scholar
  71. P. Vigneri, F. Frasca, L. Sciacca, L. Frittitta, and R. Vigneri, “Obesity and cancer,” Nutrition, Metabolism and Cardiovascular Diseases, vol. 16, no. 1, pp. 1–7, 2006. View at Publisher · View at Google Scholar · View at Scopus
  72. C. M. Kitahara, E. A. Platz, L. E. Beane Freeman et al., “Obesity and thyroid cancer risk among U.S. men and women: a pooled analysis of five prospective studies,” Cancer Epidemiology Biomarkers and Prevention, vol. 20, no. 3, pp. 464–472, 2011. View at Publisher · View at Google Scholar · View at Scopus
  73. M. Almquist, D. Johansen, T. Bjorge et al., “Metabolic factors and risk of thyroid cancer in the Metabolic syndrome and Cancer project (Me-Can),” Cancer Causes Control, vol. 22, no. 5, pp. 743–751, 2011. View at Google Scholar
  74. J. N. Rezzónico, M. Rezzónico, E. Pusiol, F. Pitoia, and H. Niepomniszcze, “Increased prevalence of insulin resistance in patients with differentiated thyroid carcinoma,” Metabolic Syndrome and Related Disorders, vol. 7, no. 4, pp. 375–380, 2009. View at Publisher · View at Google Scholar · View at Scopus
  75. T. Mijović, J. How, M. Pakdaman et al., “Body mass index in the evaluation of thyroid cancer risk,” Thyroid, vol. 19, no. 5, pp. 467–472, 2009. View at Google Scholar · View at Scopus
  76. W. J. Mack, S. Preston-Martin, L. Dal Maso et al., “A pooled analysis of case-control studies of thyroid cancer: cigarette smoking and consumption of alcohol, coffee, and tea,” Cancer Causes and Control, vol. 14, no. 8, pp. 773–785, 2003. View at Publisher · View at Google Scholar · View at Scopus
  77. E. Peterson, P. De, and R. Nuttall, “BMI, diet and female reproductive factors as risks for thyroid cancer: a systematic review,” PLoS One, vol. 7, no. 1, Article ID e29177, 2012. View at Google Scholar
  78. B. A. Kilfoy, Y. Zhang, Y. Park et al., “Dietary nitrate and nitrite and the risk of thyroid cancer in the NIH-AARP diet and health study,” International Journal of Cancer, vol. 129, no. 1, pp. 160–172, 2011. View at Publisher · View at Google Scholar · View at Scopus
  79. M. H. Ward, B. A. Kilfoy, P. J. Weyer, K. E. Anderson, A. R. Folsom, and J. R. Cerhan, “Nitrate intake and the risk of thyroid cancer and thyroid disease,” Epidemiology, vol. 21, no. 3, pp. 389–395, 2010. View at Publisher · View at Google Scholar · View at Scopus
  80. Y. Zhang, G. L. Guo, X. Han et al., “Do polybrominated diphenyl ethers (PBDE) increase the risk of thyroid cancer?” Bioscience Hypotheses, vol. 1, no. 4, pp. 195–199, 2008. View at Publisher · View at Google Scholar · View at Scopus
  81. D. C. Christiani, “Combating environmental causes of cancer,” The New England Journal of Medicine, vol. 364, no. 9, pp. 791–793, 2011. View at Publisher · View at Google Scholar · View at Scopus
  82. E. Arnbjornsson, A. Arnbjornsson, and A. Olafsson, “Thyroid cancer incidence in relation to volcanic activity,” Archives of Environmental Health, vol. 41, no. 1, pp. 36–40, 1986. View at Google Scholar · View at Scopus
  83. T. M. Kung, W. L. Ng, and J. B. Gibson, “Volcanoes and carcinoma of the thyroid: a possible association,” Archives of Environmental Health, vol. 36, no. 5, pp. 265–267, 1981. View at Google Scholar · View at Scopus