Journal of Chemistry

Journal of Chemistry / 2008 / Article

Open Access

Volume 5 |Article ID 395827 | https://doi.org/10.1155/2008/395827

A. S. Singha, Vijay Kumar Thakur, "Synthesis and Characterization of Pine Needles Reinforced RF Matrix Based Biocomposites", Journal of Chemistry, vol. 5, Article ID 395827, 8 pages, 2008. https://doi.org/10.1155/2008/395827

Synthesis and Characterization of Pine Needles Reinforced RF Matrix Based Biocomposites

Received25 Mar 2008
Accepted10 May 2008

Abstract

Synthesis and characterization of pine needles reinforced thermosetting resin (Resorcinol-Formaldehyde) which is most suitable as composite matrix has been reported. The polycondensation reaction between resorcinol and formaldehyde (RF) in different molar ratios has been applied to the synthesis of RF polymer matrix. A thermosetting resin based composite, containing approximately 10, 20, 30 and 40% of natural fiber by weight, has been obtained by adding pine needles to the Resorcinol-Formaldehyde (RF) resin. The mechanical properties of randomly oriented intimately mixed particle reinforced (Pine needles) composites were determined. Effect of fiber loading in terms of weight % on mechanical properties such as tensile, compressive, and flexural and wear properties have also been evaluated. The reinforcing of the resin with Pine needles was accomplished in particle size of 200 micron by employing optimized resin. Present work reveals that mechanical properties of the RF resin increases to extensive extent when reinforced with Pine needles. Thermal (TGA/DTA) and morphological studies (SEM) of the resin, fiber and polymer composites thus synthesized have also been carried out.

Copyright © 2008 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


More related articles

 PDF Download Citation Citation
 Order printed copiesOrder
Views616
Downloads1110
Citations

We are committed to sharing findings related to COVID-19 as quickly as possible. We will be providing unlimited waivers of publication charges for accepted research articles as well as case reports and case series related to COVID-19. Review articles are excluded from this waiver policy. Sign up here as a reviewer to help fast-track new submissions.