Journal of Chemistry
 Journal metrics
Acceptance rate42%
Submission to final decision58 days
Acceptance to publication37 days
CiteScore2.200
Impact Factor1.790

Mechanism of Fire Prevention with Liquid Carbon Dioxide and Application of Long-Distance Pressure-Holding Transportation Technology Based on Shallow Buried and Near-Horizontal Goaf Geological Conditions

Read the full article

 Journal profile

Journal of Chemistry publishes original research articles as well as review articles on all aspects of fundamental and applied chemistry, including biological, environmental, forensic, inorganic, organic, physical and theoretical.

 Editor spotlight

Journal of Chemistry maintains an Editorial Board of practicing researchers from around the world, to ensure manuscripts are handled by editors who are experts in the field of study.

 Special Issues

We currently have a number of Special Issues open for submission. Special Issues highlight emerging areas of research within a field, or provide a venue for a deeper investigation into an existing research area.

Latest Articles

More articles
Research Article

Synthesis and Characterisation of Activated Carbon Obtained from Marula (Sclerocarya birrea) Nutshell

Globally, a ninth of people use polluted water sources because an estimated 300–400 Mt of waste and 90% of sewage are discharged into water bodies from industries and developing countries, respectively. The utilisation of indigenous fruit pits in producing novel adsorbents will greatly benefit in wastewater treatment. In most underdeveloped countries, activated carbon (AC) is imported at a high cost. The study was aimed at synthesising and characterisation of AC obtained from Marula nutshell. Carbonization of organic matter from Marula nutshell was carried out at 200°C, 400°C, 500°C, and 600°C. Sulphuric (H2SO4) and phosphoric (H3PO4) acids were used as activating agents at concentrations of 20–60% (). Physicochemical characteristics of the AC, such as bulk density, moisture, ash, pH, and iodine number, were analyzed using standard methods. Functional groups and total carbon content were determined using the FTIR spectroscopy and Nitrogen Carbon Sulphur (NCS) analyzer, respectively. The values of carbon yield and total carbon in activated samples with H2SO4 and H3PO4 were 32.2–93.2%, 26.9–95.8%, and 46–79%, 20.8–69.8%, respectively. The pH, ash, moisture, and bulk density of activated high carbon samples with H2SO4 ranged from 2.4–6.1, 0.65–3.49%, 1.3–8.4%, and 0.42–0.62 gcm−3, respectively. Activated high carbon samples with H3PO4 had 2.7–3.2, 11.3–29.8%, 4.7–14.6%, and 0.39–0.54 gcm−3 pH, ash, moisture, and bulk density, respectively. The synthesised AC samples with 40% H3PO4 at 500°C had the highest iodine value of 1075.7 mg/g. FTIR results showed the presence of aliphatic carboxylic acid salt, inorganic nitrate (NO3−), and phosphate groups in the synthesised AC and were not significantly different () from commercial AC. The untreated Marula nutshell had some aliphatic hydrocarbon (alkanes), inorganic phosphate (), aliphatic ester (–COO), and aliphatic carboxylic acid salt (–C(=O)O–) groups. A novel adsorbent, AC was produced from Marula nutshell with the potential to be used in water treatment.

Research Article

A Study of 1-Benzyl-3-phenyl-2-thiourea as an Effective Steel Corrosion Inhibitor in 1.0 M HCl Solution

1-Benzyl-3-phenyl-2-thiourea (BPTU) was studied as a steel corrosion inhibitor in 1.0 M HCl solution. Experimental methods were conducted including potentiodynamic polarization measurement (PPM), electrochemical impedance spectroscopy (EIS), and scanning electron microscopy (SEM) analysis. Quantum calculations were performed at B3LYP/6-311G(d,p). Hexamethylenetetramine (URO) was selected for comparison with BPTU. The results showed that BPTU with the concentration of 2 × 10−4 M and at the temperature of 30°C could protect the steel surface with the highest inhibition efficiency of 94.99% and 94.30% according to EIS and PPM, respectively. High temperature decreased BPTU’s ability to inhibit the steel corrosion. The adsorption of BPTU on the steel surface is followed by the modified Langmuir isotherm. Quantum chemical calculations showed that the thiourea functional group is the main adsorption center of BPTU. The experimental results are completely consistent with theoretical calculations.

Research Article

Analysis of Dendrimer Generation by Sombor Indices

Dendrimers are highly branched, star-shaped macromolecules with nanometer-scale dimensions. Dendrimers are defined by three components: a central core, an interior dendritic structure (the branches), and an exterior surface with functional surface groups. Topological indices are numerical numbers that help us to understand the topology of different dendrimers and can be used to predict the properties without performing experiments in the wet lab. In the present paper, we computed the Sombor index and the reduced version of the Sombor index for the molecular graphs of phosphorus-containing dendrimers, porphyrin-cored dendrimers, PDI-cored dendrimers, triazine-based dendrimers, and aliphatic polyamide dendrimers. We also plotted our results by using Maple 2015 which help us to see the dependence of the Sombor index and reduced Sombor index on the involved parameters. Our results may help to develop better understanding about phosphorus-containing dendrimers, porphyrin-cored dendrimers, PDI-cored dendrimers, triazine-based dendrimers, and aliphatic polyamide dendrimers. Our results are also useful in the pharmaceutical industry and drug delivery.

Research Article

Synthesis and Molecular Docking of Some Grossgemin Amino Derivatives as Tubulin Inhibitors Targeting Colchicine Binding Site

Six amino derivatives of grossgemin (27) were synthesized according to the reported essential pharmacophoric features of colchicine binding site inhibitors (CBSIs). The derivatives 4–6 were obtained for the first time. The pharmacophoric features of 2–7 as CBSIs were studied to be almost identical. Furthermore, the 3D-flexible alignment of compound 5 as a representative example with colchicine showed a very good overlapping. In agreement, compounds 2–7 docked into CBS with binding modes very similar to that of colchicine and exhibited binding free energies of −24.57, −25.05, −32.16, −29.34, −26.38, and −26.86 (kcal/mol), respectively. The binding free energies of 4–7 were better than that of colchicine (−26.13 kcal/mol) with a noticeable superiority to compound 4.

Research Article

Effects of Solvents on Total Phenolic Content and Antioxidant Activity of Ginger Extracts

Ginger (Zingiber officinale) is a popular spice which is used for the treatment of different gastrointestinal and inflammatory discomfort. In the present study, the total phenolic content (TPC) and antioxidant activity of ginger extract using four solvents (ethanol, methanol, acetone, and ethyl acetate) were determined. Among the four solvents, methanol extract showed the maximum phenolic content (1183.813 mg GAE/100 g at Ayikel and 1022.409 mg GAE/100 g at Mandura) and the least phenolic content was found in acetone extract (748.865 mg GAE/100 g at Ayikel and 690.152 mg GAE/100 g at Mandura). In addition, the highest DPPH radical scavenging activity (84.868% at Ayikel and 82.883% at Mandura) was observed in methanol. However, acetone showed the least DPPH radical scavenging activity (73.864% at Ayikel and 70.597% at Mandura). Antioxidant activities of ginger extracts were also expressed as IC50 values, and acetone extract has maximum IC50 value (0.654 and 0.812 mg/mL) followed by ethyl acetate and ethanol, while being the lowest for methanol (0.481 and 0.525 mg/mL). The result of this study showed that extraction solvents significantly affected the total phenolic content and antioxidant activities of ginger. Thus, ginger can be regarded as promising candidates for natural sources of antioxidants with a high value of phenolic contents.

Research Article

TG, DTA Pyrolytic Analysis of Cobalt, Nickel, Copper, Zinc, and 5,8-Dihydroxy-1,4-Naphthoquinone Chelate Complexes

The solid state reactions identified on the TG traces with correspondence to DTG peaks consequent to the nonisothermal decomposition of polymetallic chelates of the naphthazarin with Zn (II), Co (II), Ni (II), and Cu (II) over the temperature range ambient at 800°C have been studied kinetically following the Dave and Chopra method as these solid state reactions exhibited their resemblance with the Freeman recommended reaction for kinetic studies. The solid state reactions as described followed first order kinetics. The kinetic data showed the very low value of Z for each of the solid state reaction in reference, concluding on the solid state reactions (the nonisothermal decomposition of polymetallic chelate of Zn (II), Co (II), Ni (II), and Cu (II) as slow reactions).

Journal of Chemistry
 Journal metrics
Acceptance rate42%
Submission to final decision58 days
Acceptance to publication37 days
CiteScore2.200
Impact Factor1.790
 Submit