Journal of Chemistry
 Journal metrics
Acceptance rate32%
Submission to final decision65 days
Acceptance to publication51 days
CiteScore1.320
Impact Factor1.727
 Submit

Phytochemical, Cytotoxic, and Antimicrobial Evaluation of the Fruits of Miswak Plant, Salvadora persica L.

Read the full article

 Journal profile

Journal of Chemistry publishes original research articles as well as review articles on all aspects of fundamental and applied chemistry, including biological, environmental, forensic, inorganic, organic, physical and theoretical.

 Editor spotlight

Journal of Chemistry maintains an Editorial Board of practicing researchers from around the world, to ensure manuscripts are handled by editors who are experts in the field of study.

 Special Issues

We currently have a number of Special Issues open for submission. Special Issues highlight emerging areas of research within a field, or provide a venue for a deeper investigation into an existing research area.

Latest Articles

More articles
Research Article

Fabrication of a Microfluidic System Using Micromolded Alginate Gel as a Sacrificial Material for Tissues Engineering

We described a sacrificial molding for the formation of microfluidic networks. In this molding, the micromolded calcium alginate (Ca-Alg) is introduced as a sacrificial template. The basis of this procedure is fabricating a micromolded Ca-Alg hydrogel and encapsulating this model within a second gel and removing it by ion-exchange to leave a microchannel in the remaining gel. This microfluidic system can readily deliver solutes into the channels and even control the transport of solutes from channels into the bulk of the gels. Furthermore, the perfused vascular channels can sustain the metabolic activity of encapsulated cells, indicating the feasibility of this microfluidic system in the field of tissue engineering.

Research Article

Biocementation Influence on Flexural Strength and Chloride Ingress by Lysinibacillus sphaericus and Bacillus megaterium in Mortar Structures

The concrete/mortar durability performance depends mainly on the environmental conditions, the microstructures, and its chemistry. Cement structures are subject to deterioration by the ingress of aggressive media. This study focused on the effects of Bacillus megaterium and Lysinibacillus sphaericus on flexural strength and chloride ingress in mortar prisms. Microbial solutions with a concentration of 1.0 × 107 cells/ml were mixed with ordinary Portland cement (OPC 42.5 N) to make mortar prisms at a water/cement ratio of 0.5. Four mortar categories were obtained from each bacterium based on mix and curing solution. Mortar prisms of 160 mm × 40 mm × 40 mm were used in this study. Flexural strength across all mortar categories was determined at the 14th, 28th, and 56th day of curing. Mortars prepared and cured using bacterial solution across all curing ages exhibited the highest flexural strength as well as the highest percent flexural strength gain. Lysinibacillus sphaericus mortars across all mortar categories showed higher flexural strength and percent flexural strength gain than Bacillus megaterium mortars. The highest percent flexural strength gain of 33.3% and 37.0% was exhibited by the 28th and 56th day of curing, respectively. The mortars were subjected to laboratory prepared 3.5% by mass of sodium chloride solution under the accelerated ion migration test method for thirty-six hours using a 12 V Direct Current power source after their 28th day of curing. After subjecting the mortar cubes to Cl media, their core powder was analyzed for Cl content. From these results, the apparent diffusion coefficient, Dapp, was approximated from solutions to Fick’s 2nd Law using the error function. Bacillus megaterium mortars across all mortar categories showed lower apparent diffusion coefficient values with the lowest being 2.6456 × 10–10 while the highest value for Lysinibacillus sphaericus mortars was 2.8005 × 10–10. Both of the test bacteria lowered the ordinary Portland cement Cl-ingress but Bacillus megaterium was significantly more effective than Lysinibacillus sphaericus in inhibition.

Research Article

Valency-Based Descriptors for Silicon Carbides, Bismuth(III) Iodide, and Dendrimers in Drug Applications

Silicon carbide (SiC), also called carborundum, is a semiconductor containing silicon and carbon. Dendrimers are repetitively branched molecules that are typically symmetric around the core and often adopt a spherical three-dimensional morphology. Bismuth(III) iodide is an inorganic compound with the formula . This gray-black solid is the product of the reaction between bismuth and iodine, which once was of interest in qualitative inorganic analysis. In chemical graph theory, we associate a graph to a compound and compute topological indices that help us in guessing properties of the understudy compound. A topological index is the graph invariant number, calculated from a graph representing a molecule. Most of the proposed topological indices are related either to a vertex adjacency relationship (atom-atom connectivity) in the graph or to topological distances in the graph. In this paper, we aim to compute the first and second Gourava indices and hyper-Gourava indices for silicon carbides, bismuth(III) iodide, and dendrimers.

Research Article

Aging Process of Cadmium, Copper, and Lead under Different Temperatures and Water Contents in Two Typical Soils of China

Aging process of exogenous heavy metals in soil is significant for reducing their environmental risk due to the redistribution of species of soil heavy metals. A red soil (ultisol) and a brown soil (alfisol) were selected to investigate the aging process of cadmium (Cd), copper (Cu), and lead (Pb) under different regimes of temperature and water content. Most introduced heavy metals were all transformed from dissolved fraction to more stable fractions within 5 days of incubation. During incubation, most Pb existed in the fraction bound to Fe/Mn oxides, while exchangeable and carbonate-associated fraction was the dominant portion for Cd and Cu, suggesting that the transformation rate followed the order: Pb > Cu > Cd. The exchangeable and carbonate-associated fraction in red soil, which was characterized with higher pH and Fe/Al/Mn oxides and lower organic matter (OM), was significantly higher than that in brown soil, implying that soil OM was the important factor affecting the aging process of soil heavy metals in the present study. In addition, increases of temperature and soil water content can accelerate the transformation of most introduced Cd, Cu, and Pb to more stable forms in the soils. The results indicated that soil properties, environmental factors (i.e., temperature and water content), types of heavy metals, and pollution time can significantly affect the aging process of exogenous heavy metals.

Research Article

Alkali Effect on Alkali-Surfactant-Polymer (ASP) Flooding Enhanced Oil Recovery Performance: Two Large-Scale Field Tests’ Evidence

Alkali-surfactant-polymer (ASP) flooding is very promising chemical enhanced oil recovery (EOR) technology which can make an incremental oil recovery factor (IORF) of 30% original oil in place (OOIP). How to choose alkali in ASP flooding remains a question for a long time. As the world’s only and largest ASP flooding application place, Daqing Oilfield has always adhered to the strategy of parallel development of strong alkali ASP flooding (SASP) and weak alkali ASP flooding (WASP), but SASP is in a dominant position, indicated by more investments and more project numbers. This leaves an impression that SASP is better than WASP. However, WASP is drawing more interest than SASP recently. Moreover, as the ASP flooding in Daqing went from field tests to commercial applications since 2014, how to comprehensively consider the benefit and cost of ASP flooding has become a new focus at low oil prices. This paper compares two typical large-scale field tests (B-1-D SASP and B-2-X WASP) completed in Daqing Oilfield and analyzes and discusses the causes of this difference. The injection viscosity and interfacial tension (IFT) for the two field test areas are substantially equivalent under the conditions of Daqing Oilfield, and WASP is better than SASP when reservoir geological conditions are considered. WASP exhibits the same IORF of 30% as SASP while having a much better economic performance. For the SASP field test, the injected strong alkali NaOH makes the test behave unlike a typical strong ASP flooding due to the presence of CO2 in the formation fluid, which well explains why IORF is much higher than all the other SASPs but scaling is less severe than others. This paper confirms that under Daqing Oilfield reservoir conditions, it is the alkali difference that caused the performance difference of these two tests, although some minor uncertainties exist. WASP is better than the SASP providing the same conditions . In addition, the detailed information of the two ASP field tests provided can give reference for the implementation of ASP flooding in other oilfields. After all, the study of ASP flooding enhanced oil recovery technology under low oil prices requires great foresight and determination.

Research Article

Al2O3 Nanoparticles Promote the Removal of Carbamazepine in Water by Chlorella vulgaris Immobilized in Sodium Alginate Gel Beads

The roles of Al2O3 nanoparticles on the removal of carbamazepine (CBZ) by Chlorella vulgaris immobilized in sodium alginate gel beads were for the first time investigated. The optimum conditions to prepare immobilized C. vulgaris beads with addition of Al2O3 nanoparticles were determined as follows: C. vulgaris density was 3.0 × 106 cells for 1 mL sodium alginate solution, Al2O3 nanoparticle concentration was 0.5 g/L, and concentrations of sodium alginate and CaCl2 were 1.6% and 1%, respectively. The results showed that the proposed algae beads achieved the highest CBZ removal rate of 89.6% after 4 days of treatment, relative to 68.84%, 48.56%, and 17.76% in sodium alginate-immobilized C. vulgaris, free microalgae, and Al2O3 nanoparticle alginate beads, respectively. The results also showed that the CBZ removal rate increased with more proposed algae beads, while decreased with increased bead diameter. The algae beads exhibited excellent CBZ removal ability even after three recycles. This work provided an economical and effective approach to remove CBZ from water.

Journal of Chemistry
 Journal metrics
Acceptance rate32%
Submission to final decision65 days
Acceptance to publication51 days
CiteScore1.320
Impact Factor1.727
 Submit

We are committed to sharing findings related to COVID-19 as quickly and safely as possible. Any author submitting a COVID-19 paper should notify us at help@hindawi.com to ensure their research is fast-tracked and made available on a preprint server as soon as possible. We will be providing unlimited waivers of publication charges for accepted articles related to COVID-19. Sign up here as a reviewer to help fast-track new submissions.