Journal of Chemistry
 Journal metrics
Acceptance rate42%
Submission to final decision58 days
Acceptance to publication37 days
CiteScore2.800
Journal Citation Indicator0.290
Impact Factor2.506

Textile Industry Effluent Treatment Techniques

Read the full article

 Journal profile

Journal of Chemistry publishes original research articles as well as review articles on all aspects of fundamental and applied chemistry, including biological, environmental, forensic, inorganic, organic, physical and theoretical.

 Editor spotlight

Journal of Chemistry maintains an Editorial Board of practicing researchers from around the world, to ensure manuscripts are handled by editors who are experts in the field of study.

 Special Issues

We currently have a number of Special Issues open for submission. Special Issues highlight emerging areas of research within a field, or provide a venue for a deeper investigation into an existing research area.

Latest Articles

More articles
Research Article

Substituted-Amidine Functionalized Monocyclic β-Lactams: Synthesis and In Vitro Antibacterial Profile

Background. Owing to the intrinsic stability against common β-lactamases and metallo-lactamases, monobactams gathered special attention in antibiotic drug development. However, so far, aztreonam is the only monobactam approved by FDA for clinical use. We designed new derivatives of aztreonam to enhance its antibacterial efficacy. Methods. We synthesized a series of monocyclic β-lactams by modifying mainly at the C3 position of azetidinone ring. NH2 group at C3 of azetidinone was attached to thiazole and thiadiazole which in turn was linked to nitrogenous heterocyclic rings via amidine moieties. We then investigated the in vitro antibacterial activities of synthesized compounds against ten bacterial strains of clinical interest in comparison to aztreonam and ceftazidime. Results. All compounds showed improved antibacterial activities against tested strains compared to reference drugs. Compounds 14d and 14e were most potent and showed the highest potency against all bacterial strains, with MIC values ranging from 0.25 µg/mL to 8 µg/mL, as compared to aztreonam (MIC 16 µg/mL to >64 µg/mL) and ceftazidime (MIC >64 µg/mL). These compounds (14d and 14e) may be valuable lead targets against multidrug-resistant Gram-negative bacteria.

Research Article

Hydrogeochemical Characteristics and Formation of Low-Temperature Geothermal Waters in Mangbang-Longling Area of Western Yunnan, China

Numerous low-temperature geothermal waters are distributed extensively in Mangbang-Longling of western Yunnan in China, whose formation mechanism has not been completely investigated yet. This study focused on the hydrogeochemical evolution, reservoir temperature, and recharge origin of geothermal waters using hydrogeochemical and deuterium-oxygen (D-O) isotopic studies. The low-temperature geothermal waters were characterized by HCO3-Na type, while shallow cold spring was of the hydrochemical type of HCO3-Ca. The hydrogeochemical characteristics of low-temperature geothermal waters were mainly determined by the dissolution of silicate minerals based on the geological condition and correlations of major and minor ions. The reservoir temperatures of low-temperature geothermal waters ranged from 111°C to 126°C estimated by silica geothermometry and the silicon-enthalpy graphic method. Low-temperature geothermal waters circulated at the largest depth of 1794–2077 m where deep high-temperature geothermal waters were involved. The data points of δD and δ18O of the hot spring water samples in the study area show a linear right-up trend, indicating the δ18O reaction between the water and rock and a possible mixture of magmatic water from below. The low-temperature thermal waters were recharged by meteoric water at the elevation of 2362–3653 m calculated by δD values. Upwelling by heating energy, low-temperature geothermal waters were exposed as geothermal springs in the fault and fracture intersection and mixed by up to 72% shallow cold waters at surface. Based on acquired data, a conceptual model of the low-temperature geothermal waters in the Mangbang-Longling area was proposed for future exploitation.

Research Article

Optimization of Spectrophotometric and Fluorometric Assays Using Alternative Substrates for the High-Throughput Screening of Lipase Activity

The effects of reaction conditions on the spectrophotometric and fluorometric assays using alternative substrates (p-nitrophenyl palmitate and 4-methylumbelliferyl oleate) were investigated to optimize them for the high-throughput screening of lipase activity from agricultural products. Four model lipases from Chromobacterium viscosum, Pseudomonas fluorescens, Sus scrofa pancreas, and wheat germ (Triticum aestivum) were allowed to hydrolyze the alternative substrates at different substrate concentrations (1–5 mM), operating pH (5.0–8.0), and operating temperatures (25–55°C). The results show that both the spectrophotometric and fluorometric assays worked well at the standard reaction conditions (pH 7.0 and 30°C) for finding a typical lipase, although pH conditions should be considered to detect the catalytic activity of lipases, which are applicable to more acidic or alkaline pH circumstances. To validate the optimized conditions, the high-throughput screening of lipase activity was conducted using 17 domestic agricultural products. A pileus of Pleurotus eryngii showed the highest activity in both the spectrophotometric (633.42 μU/mg) and fluorometric (101.77 μU/mg) assays. The results of this research provide practical information for the high-throughput screening of lipases using alternative substrates on microplates.

Review Article

An Overview of the Main Trends in the Creation of Biodegradable Polymer Materials

Plastic is one of the most demanded materials on the planet, and the increasing consumption of which contributes to the accumulation of significant amounts of waste based on it. For this reason, a new approach to the development of these materials has been formed: the production of polymers with constant operational characteristics during the period of consumption and capable of then being destroyed under the influence of environmental factors and being involved in the metabolic processes of natural biosystems. The paper outlines the prerequisites for the development of the field of creating biodegradable composite materials, as well as the main technical solutions for obtaining such polymeric materials. The main current solutions for reducing and regulating the degradation time of polymer materials are presented. The most promising ways of further development of the field of bioplastics production are described. Common types of polymers based on renewable raw materials, composites with their use, and modified materials from natural and synthetic polymers are considered.

Research Article

Wastewater Purification from Permanganate Ions by Sorption on the Ocimum basilicum Leaves Powder Modified by Zinc Chloride

The powder of Ocimum Basilicum leaves was treated by zinc chloride (ZnCl2) and applied as a new and low-cost sorbent for extraction of permanganate anions (MnO4) from liquid phase. The functional groups of the ring stretching vibration, –NH2 deformation, stretching of C-O, stretching of CH, and stretching of –NH were found in the sorbent of zinc chloride Ocimum basilicum leaves powder (ZCOBLP) at 1516.21, 1629.33, 1047.00, 2929.88, and 3294.93 cm−1, respectively. This adsorbent has 8.3 pHZPC, 117.27 m2·g−1 surface area, 0.00711 cc·g−1 pore volume and average pore diameter of 264.144 Å. The outcomes of sorption experiments designate the positive impact for temperature, time of agitation, and started concentration of MnO4 and negative impact for pH. The optimal conditions were 1300 mg·L−1 as started adsorbate concentration, 55°C as solution temperature, agitation time of 420 min, and pH of 1.5. The outcomes of the equilibrium and dynamic approve that this sorption is spontaneous and heat-absorbing process, and the obtained data were described well by isotherm model of Langmuir and 2nd-order dynamic model. The capacities of this sorption were 588.235, 625.000, 666.667, and 714.286 mg·g−1 at 25, 35, 45, and 55 (°C), respectively. The superior sorption capacities of the uncostly ZCOBLP will make it successfully used for MnO4 ions extraction from liquid phases.

Research Article

Pilot-Scale Study of Real Domestic Textile Wastewater Treatment Using Cassia fistula Seed-Derived Coagulant

Plant-derived coagulants have exhibited a good potential in wastewater treatment due to their “green” characteristics, high coagulating-flocculating activity, cost-effectiveness, and biodegradability. Nevertheless, research studies have focused mainly on bench-scale experiments; pilot-scale and full-scale simulations are still limited. Herein, we firstly report a pilot-scale study of real domestic textile wastewater treatment using Cassia fistula coagulant. The material characterizations using Fourier-transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), and dynamic light scattering (DLS) revealed that the natural gum extracted from C. fistula seed possessed a rough and irregular surface containing a high molecular weight galactomannan. The bench-scale investigation was initially conducted to determine the optimal pollutant concentration, initial pH, and coagulant dosage in the coagulation-flocculation process. The pilot-scale study revealed that C. fistula coagulant is an effective material for real textile wastewater treatment, showing percentage removal of 93.83% at a volume of 30 L and a coagulant dosage of 1.17 mg·L−1. Coagulation-flocculation using C. fistula seed gum could be an efficient primary wastewater treatment prior to membrane or biological methods to meet Vietnamese environmental standards. The main mechanisms of textile wastewater treatment involve adsorption/bridging interactions via hydrogen bonding and electrostatic attraction between negatively charged carboxylate groups of the coagulant and positively charged pollutants.

Journal of Chemistry
 Journal metrics
Acceptance rate42%
Submission to final decision58 days
Acceptance to publication37 days
CiteScore2.800
Journal Citation Indicator0.290
Impact Factor2.506
 Submit

Article of the Year Award: Outstanding research contributions of 2020, as selected by our Chief Editors. Read the winning articles.