Journal of Chemistry

Journal of Chemistry / 2009 / Article

Open Access

Volume 6 |Article ID 870692 | 12 pages | https://doi.org/10.1155/2009/870692

Development and Validation of a Rapid RP-HPLC Method for the Determination of Venlafaxine Hydrochloride in Pharmaceutical Dosage forms using Experimental Design

Received28 Jan 2009
Accepted25 Mar 2009

Abstract

The objective of the current study was to develop a simple, accurate, precise and rapid reversed-phase HPLC method and subsequent validation as per ICH guidelines for the determination of venlafaxine hydrochloride in pharmaceutical dosage forms. The proposed RP-HPLC method utilizes a 5 μm Varian® Microsorb-MV 100 C18 column (250 mmx4.6 mm) at ambient temperature. A 23 factorial design consisting of 3 factors at 2 levels was set up to standardize the chromatographic conditions. A numerical optimization technique employing the desirability approach was used to locate the optimum chromatographic conditions. The optimum mobile phase consisted of acetonitrile, 0.04 M potassium dihydrogen phosphate buffer and methanol (45:25:30, v/v), with pH adjusted to 5.5 using 10% phosphoric acid solution. The mobile phase was delivered isocratically at a flow rate of 1 mL/min with UV detection at 224 nm. The calibration plots constructed using the optimized chromatographic conditions displayed good linear relationship in the concentration range of 1-50 μg/mL with r=0.9992. The method was validated for precision, accuracy, robustness and recovery. The minimum detectable and minimum quantifiable amounts were found to be 0.568 and 1.72 μg/mL, respectively and the method was found to be reproducible from the statistical data generated. Venlafaxine hydrochloride was eluted at 3.43 min

Copyright © 2009 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


More related articles

372 Views | 1968 Downloads | 8 Citations
 PDF  Download Citation  Citation
 Order printed copiesOrder

Related articles

We are committed to sharing findings related to COVID-19 as quickly and safely as possible. Any author submitting a COVID-19 paper should notify us at help@hindawi.com to ensure their research is fast-tracked and made available on a preprint server as soon as possible. We will be providing unlimited waivers of publication charges for accepted articles related to COVID-19. Sign up here as a reviewer to help fast-track new submissions.