Journal of Chemistry

Journal of Chemistry / 2010 / Article

Open Access

Volume 7 |Article ID 456263 |

T. V. Anuradha, "Template-Assisted Sol-Gel Synthesis of Nanocrystalline BaTiO3", Journal of Chemistry, vol. 7, Article ID 456263, 5 pages, 2010.

Template-Assisted Sol-Gel Synthesis of Nanocrystalline BaTiO3

Received28 Oct 2009
Accepted20 Dec 2009


Nanocrystalline perovskite barium titanate with an average particle size less than ∼10 nm is produced using sol-gel route involving ligand-assisted templating. BaTiO3 is obtained by the controlled hydrolysis and condensation reaction of barium acetate (Ba(CH3COO)2) with titanium tetra chloride (TiCl4) in the reverse micelles of dodecylamine (DDA) which is used as the template. Our attempts to produce mesoporous BaTiO3 have resulted in the formation of nanocrystalline BaTiO3. The synthesis of nanostructured BaTiO3 is carried out using the ligand-assisted templating approach which proceeds through the sol-gel route. Dodecylamine is used as the template. The sol-gel process in general presents inherent advantages because the nanostructure of the desired materials can be controlled together with their porous structure. Ligand-assisted templating approach involves the formation of covalent bond between the inorganic analogue and the template. Ba(CH3COO)2 and TiCl4 are used as barium-source and titanium-source respectively. The reaction between Ba(CH3COO)2 and TiCl4 is found to take place deliberately on the pre-assembled species which acts as the template or occurring with in them which in turn will lead to the generation of the desired nanoscale structure (nanopores or nanoparticles).

Copyright © 2010 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Related articles

No related content is available yet for this article.
 PDF Download Citation Citation
 Order printed copiesOrder

Article of the Year Award: Outstanding research contributions of 2021, as selected by our Chief Editors. Read the winning articles.