Journal of Chemistry

Journal of Chemistry / 2010 / Article

Open Access

Volume 7 |Article ID 528963 | 5 pages | https://doi.org/10.1155/2010/528963

Simultaneous Estimation of Satranidazole and Ofloxacin in Tablet Dosage Form by High Performance Liquid Chromatography

Received30 Jun 2009
Accepted20 Aug 2009

Abstract

A Simple, fast and precise reversed phase high performance liquid chromatographic method is developed for the simultaneous determination of satranidazole and ofloxacin. Chromatographic separation of these drugs were performed on Kromasil C18 column (250 x 4.6 mm, 5 µ) as stationary phase with a mobile phase comprising of 20 mM potassium dihydrogen phosphate: acetonitrile in the ratio of 60:40 (v/v) containing 0.1% glacial acetic acid at a flow rate of 1 mL/min and UV detection at 318 nm. The linearity of satranidazole and ofloxacin were in the range of 1.5 to 3.6 µg/mL and 1.0 to 2.4 µg/mL respectively. The recovery was calculated by standard addition method. The average recovery was found to be 100.63% and 100.02% for satranidazole and ofloxacin respectively. The proposed method was found to be accurate, precise and rapid for simultaneous determination of satranidazole and ofloxacin

Copyright © 2010 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


More related articles

478 Views | 1276 Downloads | 1 Citation
 PDF  Download Citation  Citation
 Order printed copiesOrder

Related articles

We are committed to sharing findings related to COVID-19 as quickly and safely as possible. Any author submitting a COVID-19 paper should notify us at help@hindawi.com to ensure their research is fast-tracked and made available on a preprint server as soon as possible. We will be providing unlimited waivers of publication charges for accepted articles related to COVID-19. Sign up here as a reviewer to help fast-track new submissions.