Journal of Chemistry

Journal of Chemistry / 2010 / Article

Open Access

Volume 7 |Article ID 983202 | 5 pages |

Development and Statistical Validation of Spectrophotometric Methods for the Estimation of Nabumetone in Tablet Dosage Form

Received26 Jan 2010
Accepted20 Mar 2010


Three new simple, economic spectrophotometric methods were developed and validated for the estimation of nabumetone in bulk and tablet dosage form. First method includes determination of nabumetone at absorption maxima 330 nm, second method applied was area under curve for analysis of nabumetone in the wavelength range of 326-334 nm and third method was First order derivative spectra with scaling factor 4. Beer law obeyed in the concentration range of 10-30 μg/mL for all three methods. The correlation coefficients were found to be 0.9997, 0.9998 and 0.9998 by absorption maxima, area under curve and first order derivative spectra. Results of analysis were validated statistically and by performing recovery studies. The mean percent recoveries were found satisfactory for all three methods. The developed methods were also compared statistically using one way ANOVA. The proposed methods have been successfully applied for the estimation of nabumetone in bulk and pharmaceutical tablet dosage form.

Copyright © 2010 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

More related articles

350 Views | 788 Downloads | 5 Citations
 PDF  Download Citation  Citation
 Order printed copiesOrder

Related articles

We are committed to sharing findings related to COVID-19 as quickly and safely as possible. Any author submitting a COVID-19 paper should notify us at to ensure their research is fast-tracked and made available on a preprint server as soon as possible. We will be providing unlimited waivers of publication charges for accepted articles related to COVID-19. Sign up here as a reviewer to help fast-track new submissions.