Journal of Chemistry

Journal of Chemistry / 2012 / Article

Open Access

Volume 9 |Article ID 145812 | 10 pages | https://doi.org/10.1155/2012/145812

Neodymium(III) PVC Membrane Electrodchemical Sensor Based on N-benzoylethylidene-2-aminobenzylamine

Received05 Nov 2011
Accepted07 Jan 2012

Abstract

The N-benzoylethylidene-2-aminobenzylamine (BEA) was used as a suitable ionophore in construction of neodymium ion selective electrode. The electrode with composition of 30% PVC, 58% solvent mediator (NB), 2% ionophore (BEA) and 10% anionic additive (OA) shows the best potentiometric response characteristics. The Nd3+ sensor exhibits a Nernstian slope of 21.2 ± 0.2 mV decade-1 over the concentration range of 1.0 × 10-6 to 1.0 × 10-2 mol L-1, and a detection limit of 6.3 × 10-7 mol L-1 of Nd3+ ions. The potentiometric response of the sensor is independent of the solution pH in the range of 2.4–8.5. It has a very short response time, in the whole concentration range (~7 s), and can be used for at least eight weeks. The proposed sensor revealed high selectivity with respect to all common alkali, alkaline earth, transition and heavy metal ions, including members of the lanthanide family other than Nd3+. The Nd3+ sensor was successfully applied as an indicator electrode in the potentiometric titration of Nd3+ ions with EDTA. The electrode was also employed for the determination of the fluoride ion in two mouth wash preparations.

Copyright © 2012 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


More related articles

380 Views | 668 Downloads | 12 Citations
 PDF  Download Citation  Citation
 Order printed copiesOrder

Related articles

We are committed to sharing findings related to COVID-19 as quickly and safely as possible. Any author submitting a COVID-19 paper should notify us at help@hindawi.com to ensure their research is fast-tracked and made available on a preprint server as soon as possible. We will be providing unlimited waivers of publication charges for accepted articles related to COVID-19. Sign up here as a reviewer to help fast-track new submissions.