Journal of Chemistry

Journal of Chemistry / 2012 / Article

Open Access

Volume 9 |Article ID 298354 | 7 pages | https://doi.org/10.1155/2012/298354

Microwave Synthesis, Spectral, Thermal and Electrical Properties of Some Metal Complexes Involving 5-Bromosalicylaldehyde

Received19 Nov 2011
Accepted15 Jan 2012

Abstract

Microwave-assisted synthesis is a branch of green chemistry. The salient features of microwave approach are shorter reaction times, simple reaction conditions and enhancements in yields. Some new Schiff base complexes of Cr(III), Co(II), Ni(II) and Cu(II) derived from 5-bromosalicylaldehyde with 4-nitro-1,2-phenylenediamine (H2L1) have been synthesized by conventional as well as microwave methods. These compounds have been characterized by elemental analysis, FT-IR, FAB-mass, molar conductance, electronic spectra, ESR, magnetic susceptibility and thermal analysis. The complexes exhibit coordination number 4 or 6. The complexes are coloured and stable in air. Analytical data revealed that all the complexes exhibited 1:1 (metal: ligand) ratio. FAB-mass and thermal data show degradation pattern of the complexes. The thermal behavior of metal complexes shows that the hydrated complexes loses water molecules of hydration in the first step; followed by decomposition of ligand molecules in the subsequent steps. The solid state electrical conductivity of the metal complexes has also been measured. Solid state electrical conductivity studies reflect semiconducting nature of the complexes.

Copyright © 2012 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


More related articles

575 Views | 1530 Downloads | 2 Citations
 PDF  Download Citation  Citation
 Order printed copiesOrder

Related articles

We are committed to sharing findings related to COVID-19 as quickly and safely as possible. Any author submitting a COVID-19 paper should notify us at help@hindawi.com to ensure their research is fast-tracked and made available on a preprint server as soon as possible. We will be providing unlimited waivers of publication charges for accepted articles related to COVID-19. Sign up here as a reviewer to help fast-track new submissions.