Table of Contents Author Guidelines Submit a Manuscript
E-Journal of Chemistry
Volume 9 (2012), Issue 3, Pages 1070-1076

Novel Cubic Magnetite Nanoparticle Synthesis Using Room Temperature Ionic Liquid

Department of Industrial Chemistry, School of Chemistry, Alagappa University, Karaikudi – 630 003, Tamil Nadu, India

Received 11 September 2011; Accepted 8 November 2011

Copyright © 2012 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Room Temperature Ionic liquids are relatively more useful in the synthesis of inorganic nanostructured materials because of their unique properties. To synthesize the iron oxide nanoparticle in simple precipitation method, a novel ionic liquid was used as the greener medium and stabilizing agent namely “1-n-butyl-3-methylimidazolium trifluoromethane sulfonate [BMIM][TfO]”. The crystallinity, chemical structure, morphology and magnetic properties of the synthesized magnetite nanoparticles have been characterized by using X-ray diffraction (XRD), Fourier Transform Infrared (FT-IR), Scanning electron microscopy (SEM), Atomic force microscopy(AFM), Transmission electron microscopy (TEM) and Vibrating sample magnetometer (VSM) studies. The XRD study is divulge that the synthesized magnetite nanoparticles have inverse spinel face centered cubic structure. The FT-IR vibration peaks show the formation of Fe3O4 nanoparticles, where the vibration peak for Fe-O is deliberately presence at 584 cm-1. The average particle size of the synthesized nanoparticles is found to be 35 nm. Homogeneously dispersed cubic shape with superstructure is found through SEM, AFM and TEM examination studies. The synthesized iron oxide nanoparticles have a high saturation magnetization value of 25 emu/g, which is very much useful for biomedical applications.