Journal of Chemistry

Journal of Chemistry / 2012 / Article

Open Access

Volume 9 |Article ID 541909 | 13 pages | https://doi.org/10.1155/2012/541909

Kinetics and Equilibrium Studies on Adsorption of Acid Red 18 (Azo-Dye) Using Multiwall Carbon Nanotubes (MWCNTs) from Aqueous Solution

Received12 Aug 2011
Accepted04 Oct 2011

Abstract

Azo dyes are one of the synthetic dyes that are used in many textile industries. Adsorption is one of the most effective techniques for removal of dye-contaminated wastewater. In this work, efficiency of multiwalled carbon nanotubes (MWCNTs) as an adsorbent for removal of Acid Red 18 (azo-dye) from aqueous solution was determined. The parameters affecting the adsorption process such as contact time, pH, adsorbent dosage, and initial dye concentration were studied. Experimental results have shown by increasing the adsorbent dosage, the rate of dye removal was increased, but the amount of adsorbed dyes per mass unit of MWCNTs was declined. pH as one of the most important influencing factors on the adsorption process was evaluated. The best pH for adsorption process was acidic pH of about 3. To describe the equilibrium of adsorption, the Langmuir, Freundlich and Temkin isotherms were used. The Langmuir isotherm (R2=0.985) was the best fitted for experimental data with maximum adsorption capacity of 166.67 mg/g. A higher correlation value of the kinetic's model was observed close to pseudo second order (R2=0.999) compared to other kinetic models.

Copyright © 2012 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


More related articles

605 Views | 1311 Downloads | 73 Citations
 PDF  Download Citation  Citation
 Order printed copiesOrder

Related articles

We are committed to sharing findings related to COVID-19 as quickly and safely as possible. Any author submitting a COVID-19 paper should notify us at help@hindawi.com to ensure their research is fast-tracked and made available on a preprint server as soon as possible. We will be providing unlimited waivers of publication charges for accepted articles related to COVID-19. Sign up here as a reviewer to help fast-track new submissions.