Journal of Chemistry

Journal of Chemistry / 2012 / Article

Open Access

Volume 9 |Article ID 706938 | 9 pages | https://doi.org/10.1155/2012/706938

The Influence of the Chemical Structures of Chitosan and Acid Dye on the Adsorption Process

Received05 Oct 2011
Accepted03 Dec 2011

Abstract

The objective of this paper is the study of the influence of the chemical structures of adsorbent and adsorbate on the adsorption process. By using of crab shell chitosan (CC) and deep-pink shrimp chitosan (CP) for removal of acid 183 and AR114 from aqueous solutions, it is shown that CP, which corresponds to the highest molecular weight, is the most efficient adsorbent material. In addition, the best extent of decolorization is obtained for AR 183 that is the smallest molecule. Langmuir model represents the best fit of the experimental data, indicating monolayer coverage of chitosan outer surface. Pseudo-second order kinetic model describes accurately the adsorption processes, suggesting chemical rate limiting steps. The positive values of the enthalpy changes indicated endothermic attachment of dyes to the biomaterials. CP/AR183 system corresponds to the most energetically favorable phenomenon. Besides, desorption of AR from chitosan was found to be very low in acidic aqueous medium for all couples.

Copyright © 2012 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


More related articles

402 Views | 984 Downloads | 0 Citations
 PDF  Download Citation  Citation
 Order printed copiesOrder

Related articles

We are committed to sharing findings related to COVID-19 as quickly and safely as possible. Any author submitting a COVID-19 paper should notify us at help@hindawi.com to ensure their research is fast-tracked and made available on a preprint server as soon as possible. We will be providing unlimited waivers of publication charges for accepted articles related to COVID-19. Sign up here as a reviewer to help fast-track new submissions.