Journal of Chemistry

Journal of Chemistry / 2012 / Article

Open Access

Volume 9 |Article ID 769532 | 16 pages | https://doi.org/10.1155/2012/769532

Alkali Activation of Oil Shale Ash Based Ceramics

Received10 Jun 2011
Accepted13 Aug 2011

Abstract

Timahdit oil shale was subjected to firing transformation via ceramics processing followed by alkali activation to synthesis a materials combining the mechanical properties of ceramics and Zeolites. The mineralogical transformations during firing oil shale have been studied. The main crystalline phases found in oil shale ash (OSA) were wollastonite, gehlenite and augite. Modified oil shale ash (MOSA) was obtained with HNO3 acid-leaching in the aim to diminish Ca content. Our experimental approach required a NaOH alkaline activating solution with different concentrations (0.5; 1; 2; 4; 6 and 8M). In our study, X-ray diffraction (XDR), Fourier transform infrared (FTIR) and SEM/EDS analysis were used to evaluate the effect of alkali activation on the structural arrangement of the starting materials (OSA and MOSA) in our study. The quantity and the type of the produced zeolites depended critically on the starting materials and on the NaOH concentration.

Copyright © 2012 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


More related articles

447 Views | 1163 Downloads | 4 Citations
 PDF  Download Citation  Citation
 Order printed copiesOrder

Related articles

We are committed to sharing findings related to COVID-19 as quickly and safely as possible. Any author submitting a COVID-19 paper should notify us at help@hindawi.com to ensure their research is fast-tracked and made available on a preprint server as soon as possible. We will be providing unlimited waivers of publication charges for accepted articles related to COVID-19. Sign up here as a reviewer to help fast-track new submissions.