Journal of Chemistry

Journal of Chemistry / 2012 / Article

Open Access

Volume 9 |Article ID 802621 | 10 pages | https://doi.org/10.1155/2012/802621

Separation Studies of Pd(II) from Acidic Chloride Solutions of Pt(IV), Ni(II) and Rh(III) by Using 4-Aroyl-3-Phenyl-5-Isoxazolones

Received25 Oct 2011
Accepted30 Dec 2011

Abstract

This study examined the effect influence of various factors on the extraction of Pd(II) to develop a new liquid-liquid extraction mechanism for the selective separation of palladium(II) from its acidic chloride solutions using 4-aroyl-3-phenyl-5-isoxazolones (HA), such as 3-phenyl-4-(4-fluorobenzoyl)-5- isoxazolone (HFBPI), 3-phenyl-4-benzoyl-5-isoxazolone (HPBI) and 3-phenyl-4- (4-toluoyl)-5-isoxazolone (HTPI). The extraction strength of Pd(II) with HA were in the following order: HFBPI > HPBI > HTPI, which is opposite to that observed with their pKa values. HPBI was used to separate Pd(II) from Pt(IV), Ni(II) and Rh(III) metal ions and calculated their separation factors (S.F.) were followed in the order: Pd/Ni (40±0.4) > Pd/Pt (25±0.2) > Pd/Rh (15±0.3 > Rh/Ni (2.7±0.3) > Pt/Ni ≈ Rh/Pt (1.7±0.2). The loading and striping of Pd(II) (1.12×10-4 mol L-1) were also examined using 1.0×10-3 mol L-1 HPBI in CHCl3 and 1.0 mol L-1 HCl, respectively. The results demonstrated that the maximum (97.5%) extraction and desorption (89%) of metal required at least 3.0 cycles. The developed method was applied successfully to the separation of palladium from synthetic water samples.

Copyright © 2012 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


More related articles

388 Views | 467 Downloads | 2 Citations
 PDF  Download Citation  Citation
 Order printed copiesOrder

Related articles

We are committed to sharing findings related to COVID-19 as quickly and safely as possible. Any author submitting a COVID-19 paper should notify us at help@hindawi.com to ensure their research is fast-tracked and made available on a preprint server as soon as possible. We will be providing unlimited waivers of publication charges for accepted articles related to COVID-19. Sign up here as a reviewer to help fast-track new submissions.