Table of Contents Author Guidelines Submit a Manuscript
Journal of Chemistry
Volume 2013, Article ID 125731, 9 pages
http://dx.doi.org/10.1155/2013/125731
Research Article

Protection of Petroleum Pipeline Carbon Steel Alloys with New Modified Core-Shell Magnetite Nanogel against Corrosion in Acidic Medium

1Chemistry Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
2Research Chair of Surfactant, Chemistry Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
3Chemistry Department, Faculty of Science, Helwan University, Helwan, Egypt
4Egyptian Petroleum Research Institute, Nasr City, Cairo 11727, Egypt
5Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt

Received 22 August 2013; Revised 9 October 2013; Accepted 11 October 2013

Academic Editor: Ali Nokhodchi

Copyright © 2013 Gamal A. El Mahdy et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. M. Costa and J. M. Lluch, “The use of quantum mechanics calculations for the study of corrosion inhibitors,” Corrosion Science, vol. 24, no. 11-12, pp. 929–933, 1984. View at Google Scholar
  2. R. Sayós, M. González, and J. M. Costa, “On the use of quantum chemical methods as an additional tool in studying corrosion inhibitor substances,” Corrosion Science, vol. 26, no. 11, pp. 927–934, 1986. View at Publisher · View at Google Scholar
  3. P. G. Abdul-Ahad and S. H. F. Al-Madfai, “Elucidation of corrosion inhibition mechanism by means of calculated electronic indexes,” Corrosion, vol. 45, no. 12, pp. 978–980, 1989. View at Google Scholar · View at Scopus
  4. F. B. Growcock, “Inhibition of steel corrosion in HCl by derivatives of cinnamaldehyde. Part I. corrosion inhibition model,” Corrosion, vol. 45, no. 12, pp. 1003–1007, 1989. View at Google Scholar · View at Scopus
  5. F. B. Growcock, W. W. Frenier, and P. A. Andreozzi, “Inhibition of steel corrosion in HCl by derivatives of cinnamaldehyde. Part II. structure-activity correlations,” Corrosion, vol. 45, no. 12, pp. 1007–1015, 1989. View at Google Scholar · View at Scopus
  6. P. Gong, J. Yu, H. Sun et al., “Preparation and characterization of OH-functionalized magnetic nanogels under UV irradiation,” Journal of Applied Polymer Science, vol. 101, no. 3, pp. 1283–1290, 2006. View at Publisher · View at Google Scholar
  7. H. Sun, J. Yu, P. Gong, D. Xu, C. Zhang, and S. Yao, “Novel core-shell magnetic nanogels synthesized in an emulsion-free aqueous system under UV irradiation for targeted radiopharmaceutical applications,” Journal of Magnetism and Magnetic Materials, vol. 294, no. 3, pp. 273–280, 2005. View at Publisher · View at Google Scholar
  8. A. J. Hoffman, H. Yee, G. Mills, and M. R. Hoffmann, “Photoinitiated polymerization of methyl methacrylate using Q-sized ZnO colloids,” Journal of Physical Chemistry, vol. 96, no. 13, pp. 5540–5546, 1992. View at Google Scholar · View at Scopus
  9. A. L. Stroyuk, V. M. Granchak, A. V. Korzhak, and S. Y. Kuchmii, “Photoinitiation of buthylmethacrylate polymerization by colloidal semiconductor nanoparticles,” Journal of Photochemistry and Photobiology A, vol. 162, no. 2-3, pp. 339–351, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. L. Ah, E. Salabas, and F. Schuth, “Magnetic nanoparticles: synthesis, protection, functionalization, and application,” Angewandte Chemie, vol. 46, no. 8, pp. 1222–1244, 2007. View at Google Scholar
  11. M. Namdeo, S. Saxena, R. Tankhiwale, M. Bajpai, Y. M. Mohan, and S. K. Bajpai, “Magnetic nanoparticles for drug delivery applications,” Journal of Nanoscience and Nanotechnology, vol. 8, no. 7, pp. 3247–3271, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. T. Dey, “Polymer-coated magnetic nanoparticles: surface modification and end-functionalization,” Journal of Nanoscience and Nanotechnology, vol. 6, no. 8, pp. 2479–2483, 2006. View at Google Scholar
  13. A. K. Gupta, R. R. Naregalkar, V. D. Vaidya, and M. Gupta, “Recent advances on surface engineering of magnetic iron oxide nanoparticles and their biomedical applications,” Nanomedicine, vol. 2, no. 1, pp. 23–39, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Y. Lee and M. T. Harris, “Surface modification of magnetic nanoparticles capped by oleic acids: characterization and colloidal stability in polar solvents,” Journal of Colloid and Interface Science, vol. 293, no. 2, pp. 401–408, 2006. View at Publisher · View at Google Scholar
  15. J. R. McCarthy and R. Weissleder, “Multifunctional magnetic nanoparticles for targeted imaging and therapy,” Advanced Drug Delivery Reviews, vol. 60, no. 11, pp. 1241–1251, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. V. Salgueirino-Maceira and M. A. Correa-Duarte, “Increasing magnetic core-shell structured nanocomposites complexity for biological applications,” Advanced Materials, vol. 19, no. 23, pp. 4131–4144, 2007. View at Publisher · View at Google Scholar
  17. O. Veiseh, J. W. Gunn, and M. Zhang, “Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging,” Advanced Drug Delivery Reviews, vol. 62, no. 3, pp. 284–304, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Konerackáa, P. Kopčfdýa, M. Antalíka, M. Timko, C. N. Ramchand, and D. Lobo, “Immobilization of proteins and enzymes to fine magnetic particles,” Journal of Magnetism and Magnetic Materials, vol. 201, no. 1–3, pp. 427–430, 1999. View at Publisher · View at Google Scholar
  19. J. Li, X. He, Z. Wu, K. Wang, G. Shen, and R. Yu, “Piezoelectric immunosensor based on magnetic nanoparticles with simple immobilization procedures,” Analytica Chimica Acta, vol. 481, no. 2, pp. 191–198, 2003. View at Publisher · View at Google Scholar · View at Scopus
  20. H. Sun, J. Yu, P. Gong, D. Xu, C. Zhang, and S. Yao, “Novel core-shell magnetic nanogels synthesized in an emulsion-free aqueous system under UV irradiation for targeted radiopharmaceutical applications,” Journal of Magnetism and Magnetic Materials, vol. 294, no. 3, pp. 273–280, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. J. Hong, D. Xu, P. Gong, J. Yu, H. Ma, and S. Yao, “Covalent-bonded immobilization of enzyme on hydrophilic polymer covering magnetic nanogels,” Microporous and Mesoporous Materials, vol. 109, no. 1–3, pp. 470–477, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. H. Noguchi, N. Yanase, Y. Uchida, and T. Suzuta, “Preparation and characterization by thermal analysis of magnetic latex particles,” Journal of Applied Polymer Science, vol. 48, no. 9, pp. 1539–1547, 1993. View at Publisher · View at Google Scholar · View at Scopus
  23. S. V. Vinogradov, T. K. Bronich, and A. V. Kabanov, “Nanosized cationic hydrogels for drug delivery: preparation, properties and interactions with cells,” Advanced Drug Delivery Reviews, vol. 54, no. 1, pp. 135–147, 2002. View at Google Scholar
  24. G. H. Sedahmed, B. A. Abd El-Naby, and A. Abdel-Khali, “Corrosion inhibition through decreasing the rate of mass transfer by drag-reducing agents,” Corrosion Science, vol. 17, no. 10, pp. 865–869, 1977. View at Google Scholar · View at Scopus
  25. A. M. Atta, O. E. El-Azabawy, H. S. Ismail, and M. A. Hegazy, “Novel dispersed magnetite core-shell nanogel polymers as corrosion inhibitors for carbon steel in acidic medium,” Corrosion Science, vol. 53, no. 5, pp. 1680–1689, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. A. M. Atta and A. K. F. Dyab, “Coated magnetite nanoparticles, method for the preparation thereof and their use,” European patent field, with application no: EP13167616.5, 2013.
  27. R. Matsuno, K. Yamamoto, H. Otsuka, and A. Takahara, “Polystyrene—and poly(3-vinylpyridine)-grafted magnetite nanoparticles prepared through surface-initiated nitroxide-mediated radical polymerization,” Macromolecules, vol. 37, no. 6, pp. 2203–2209, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. C. E. Astete, C. S. S. R. Kumar, and C. M. Sabliov, “Size control of poly(d,l-lactide-co-glycolide) and poly(d,l-lactide-co-glycolide)-magnetite nanoparticles synthesized by emulsion evaporation technique,” Colloids and Surfaces A, vol. 299, no. 1–3, pp. 209–216, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. P. S. Sidhu, R. J. Gilkes, R. M. Cornell, A. M. Posner, and J. P. Quirk, “Dissolution of iron oxides and oxyhydroxides in hydrochloric and perchloric acids,” Clays & Clay Minerals, vol. 29, no. 4, pp. 269–276, 1981. View at Google Scholar · View at Scopus
  30. I.-M. Chou and H. P. Eugster, “Solubility of magnetite in supercritical chloride solutions,” American Journal of Science, vol. 277, pp. 1296–1314, 1977. View at Publisher · View at Google Scholar
  31. F. Z. Bouanis, F. Bentiss, M. Traisnel, and C. Jama, “Enhanced corrosion resistance properties of radiofrequency cold plasma nitrided carbon steel: gravimetric and electrochemical results,” Electrochimica Acta, vol. 54, no. 8, pp. 2371–2378, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. P. C. Okafor, C. B. Liu, X. Liu, and Y. G. Zheng, “Inhibition of CO2 corrosion of N80 carbon steel by carboxylic quaternary imidazoline and halide ions additives,” Journal of Applied Electrochemistry, vol. 39, no. 12, pp. 2535–2543, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. P. C. Okafor and Y. G. Zheng, “Synergistic inhibition behaviour of methylbenzyl quaternary imidazoline derivative and iodide ions on mild steel in H2SO4 solutions,” Corrosion Science Journal, vol. 51, no. 4, pp. 850–859, 2009. View at Publisher · View at Google Scholar
  34. Y.-S. Choi, S. Nesic, and S. Ling, “Effect of H2S on the CO2 corrosion of carbon steel in acidic solutions,” Electrochimica Acta, vol. 56, no. 4, pp. 1752–1760, 2011. View at Publisher · View at Google Scholar · View at Scopus
  35. K. Bílková and E. Gulbrandsen, “Kinetic and mechanistic study of CO2 corrosion inhibition by cetyl trimethyl ammonium bromide,” Electrochimica Acta, vol. 53, no. 16, pp. 5423–5433, 2008. View at Publisher · View at Google Scholar
  36. D. M. Ortega-Toledo, J. G. Gonzalez-Rodriguez, M. Casales, M. A. Neri-Florez, and A. Martinez-Villafaňe, “The CO2 corrosion inhibition of a high strength pipeline steel by hydroxyethyl imidazoline,” Materials Chemistry and Physics, vol. 122, no. 2–3, pp. 485–490, 2010. View at Publisher · View at Google Scholar
  37. J. G. Gonzalez-Rodriguez, T. Zeferino-Rodriguez, D. M. Ortega et al., “Effect of microestructure on the CO2 corrosion inhibition by carboxyamidoimidazolines on a pipeline steel,” International Journal of Electrochemical Science, vol. 2, pp. 883–896, 2007. View at Google Scholar
  38. E. F. Diaz, J. G. Gonzalez-Rodriguez, A. Martinez-Villafaňe, and C. Gaona-Tiburcio, “H2S corrosion inhibition of an ultra high strength pipeline by carboxyethyl-imidazoline,” Journal of Applied Electrochemistry, vol. 40, no. 9, pp. 1633–1640, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. M. A. Quraishi, I. H. Farooqi, and P. A. Saini, “Technical note inhibition of dezincification of 70–30 brass by aminoalkyl mercaptotriazoles,” British Corrosion Journal, vol. 35, no. 1, pp. 78–80, 2000. View at Publisher · View at Google Scholar
  40. Y. Chen, T. Hong, M. Gopal, and W. P. Jepson, “EIS studies of a corrosion inhibitor behavior under multiphase flow conditions,” Corrosion Science, vol. 42, no. 6, pp. 979–990, 2000. View at Publisher · View at Google Scholar · View at Scopus
  41. G. A. Moraga, G. G. Silva, T. Matencio, and R. M. Paniago, “Poly(2,5-dimethoxy aniline)/fluoropolymer blend coatings to corrosion inhibition on stainless steel,” Synthetic Metals, vol. 156, no. 16-17, pp. 1036–1042, 2006. View at Publisher · View at Google Scholar · View at Scopus
  42. G. Bellanger, “Inhibition of localized corrosion for stainless steels in low-level radioactive water containing chloride,” Corrosion Science, vol. 48, no. 6, pp. 1379–1403, 2006. View at Publisher · View at Google Scholar
  43. E. M. Sherif and S.-M. Park, “Inhibition of copper corrosion in acidic pickling solutions by N-phenyl-1,4-phenylenediamine,” Electrochimica Acta, vol. 51, no. 22, pp. 4665–4673, 2006. View at Publisher · View at Google Scholar · View at Scopus
  44. A. K. Satpati and P. V. Ravindran, “Electrochemical study of the inhibition of corrosion of stainless steel by 1,2,3-benzotriazole in acidic media,” Materials Chemistry and Physics, vol. 109, no. 2-3, pp. 352–359, 2008. View at Publisher · View at Google Scholar · View at Scopus
  45. ASTM, Designation, G-106, 427, 1994.
  46. M. Saremi, C. Dehghanian, and M. M. Sabet, “The effect of molybdate concentration and hydrodynamic effect on mild steel corrosion inhibition in simulated cooling water,” Corrosion Science, vol. 48, no. 6, pp. 1404–1412, 2006. View at Publisher · View at Google Scholar · View at Scopus
  47. M. Lattuada and T. A. Hatton, “Functionalization of monodisperse magnetic nanoparticles,” Langmuir, vol. 23, no. 4, pp. 2158–2168, 2007. View at Publisher · View at Google Scholar · View at Scopus