Table of Contents Author Guidelines Submit a Manuscript
Journal of Chemistry
Volume 2013, Article ID 147364, 5 pages
Research Article

Determination of Thiocyanate by Kinetic Spectrophotometric Flow Injection Analysis

1Department of Chemistry, Majlesi Branch, Islamic Azad University, Isfahan, Iran
2Department of Chemistry, Shahreza Branch, Islamic Azad University, Isfahan, Iran

Received 16 December 2011; Revised 26 May 2012; Accepted 9 June 2012

Academic Editor: Bartolo Gabriele

Copyright © 2013 Mohsen Keyvanfard et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. F. Lavorante, M. A. Feres, and B. F. Reis, “Multi-commutation in flow analysis: a versatile tool for the development of the automatic analytical procedure focused on the reduction of reagent consumption,” Spectroscopy Letters, vol. 39, no. 6, pp. 631–650, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. G. F. Wang, M. G. Li, Y. C. Gao, and B. Fang, “Amperometric sensor used for determination of thiocyanate with a silver nanoparticles modified electrode,” Sensors, vol. 4, no. 9, pp. 147–155, 2004. View at Google Scholar · View at Scopus
  3. J. J. Silva Júnior, M. A. Farias, V. L. Silva et al., “Spectrophotometric determination of thiocyanate in human saliva employing micropumping multicommutation flow system,” Spectroscopy Letters, vol. 43, no. 3, pp. 213–219, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. M. A. Chamjangali, G. Bagherian, and N. Salek-Gilani, “Determination of trace amounts of thiocyanate by a new kinetic procedure based on an induction period,” Spectrochimica Acta—Part A, vol. 67, no. 5, pp. 1252–1256, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. A. A. Ensafi, T. Khayamian, and R. Tabaraki, “Simultaneous kinetic determination of thiocyanate and sulfide using eigenvalue ranking and correlation ranking in principal component-wavelet neural network,” Talanta, vol. 71, no. 5, pp. 2021–2028, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. H. Karimi and M. Ghaedi, “Simultaneous determination of thiocyanate and salycilate by a combined UV-spectrophotometric detection principal component artificial neural network,” Annali di Chimica, vol. 96, no. 11-12, pp. 657–667, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. J. Kong, J. Fan, and S. Feng, “Kinetic fluorimetric determination of trace thiocyanate in saliva,” Journal of Instrumental Analysis, vol. 25, no. 1, p. 109, 2006. View at Google Scholar
  8. B. Gong and G. Gong, “Fluorimetric method for the determination of thiocyanate with 2′,7′-dichlorofluorescein and iodine1,” Analytica Chimica Acta, vol. 394, no. 2-3, pp. 171–175, 1999. View at Publisher · View at Google Scholar
  9. R. A. Niemann and D. L. Anderson, “Determination of iodide and thiocyanate in powdered milk and infant formula by on-line enrichment ion chromatography with photodiode array detection,” Journal of Chromatography A, vol. 1200, no. 2, pp. 193–197, 2008. View at Publisher · View at Google Scholar
  10. E. Saussereau, J.-P. Goullé, and C. Lacroix, “Determination of thiocyanate in plasma by ion chromatography and ultraviolet detection,” Journal of Analytical Toxicology, vol. 31, no. 7, pp. 383–387, 2007. View at Google Scholar · View at Scopus
  11. J. Xu, Y. Wang, Y. Xian et al., “Simultaneous determination of oxalate, thiosulfate, and thiocyanate in urine by ion-exclusion chromatography with electrochemical detection,” Chromatographia, vol. 56, no. 7-8, pp. 449–453, 2002. View at Google Scholar · View at Scopus
  12. M. Li, G. Wang, Y. Gao, and B. Fang, “Determination of trace thiocyanate with glassy graphite electrode modified with nano-size silver,” Physical Testing and Chemical Analysis, vol. 41, no. 5, p. 305, 2005. View at Google Scholar
  13. H. Sulistyarti, S. D. Kolev, and S. Lim, Indonesian Journal of Chemistry, vol. 10, p. 167, 2010.
  14. A. Tanaka, M. Miyazaki, and T. Deguchi, “New simultaneous catalytic determination of thiocyanate and iodide by flow injection analysis,” Analytical Letters, vol. 18, no. 6, pp. 695–705, 1985. View at Google Scholar
  15. D. V. Brown, N. A. Chaniotakis, I. H. Lee et al., “Mn(III)-porphyrin-based thiocyanate-selective membrane electrodes: characterization and application in flow injection determination of thiocyanate in saliva,” Electroanal, vol. 1, no. 6, pp. 477–484, 1989. View at Publisher · View at Google Scholar
  16. I. R. Epstein, K. Kustin, and R. H. Simoyi, “Kinetics and mechanism of the reaction of bromine with thiocyanate,” Journal of Physical Chemistry, vol. 96, no. 15, pp. 6326–6331, 1992. View at Google Scholar · View at Scopus
  17. IUPAC Nomenclature, “Nomenclature, symbols, units and their usage in spectrochemical analysis—II. Data interpretation,” Pure and Applied Chemistry, vol. 45, no. 2, pp. 99–103, 1976. View at Google Scholar